ysharma's picture
ysharma HF Staff
upd
60bca8f
raw
history blame
3.22 kB
from diffusers import StableDiffusionPipeline
from lora_diffusion import monkeypatch_lora, tune_lora_scale
import torch
import os
import gradio as gr
import subprocess
MODEL_NAME="stabilityai/stable-diffusion-2-1-base"
INSTANCE_DIR="./data_example"
OUTPUT_DIR="./output_example"
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
#prompt = "style of sks, baby lion"
torch.manual_seed(1)
#image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need
#image # nice. diffusers are cool. #no need
#finetuned_lora_weights = "./lora_weight.pt"
#global var
counter = 0
#Getting Lora fine-tuned weights
def monkeypatching(alpha, in_prompt): #, prompt, pipe): finetuned_lora_weights
print("****** inside monkeypatching *******")
print(f"in_prompt is - {str(in_prompt)}")
global counter
if counter == 0 :
monkeypatch_lora(pipe.unet, torch.load("./output_example/lora_weight.pt")) #finetuned_lora_weights
tune_lora_scale(pipe.unet, alpha) #1.00)
counter +=1
else :
tune_lora_scale(pipe.unet, alpha) #1.00)
prompt = "style of sks, " + str(in_prompt) #"baby lion"
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
return image
def accelerate_train_lora(steps):
print("*********** inside accelerate_train_lora ***********")
#subprocess.run(accelerate launch {"./train_lora_dreambooth.py"} \
#subprocess.Popen(f'accelerate launch {"./train_lora_dreambooth.py"} \
os.system( f'accelerate launch {"./train_lora_dreambooth.py"} \
--pretrained_model_name_or_path={MODEL_NAME} \
--instance_data_dir={INSTANCE_DIR} \
--output_dir={OUTPUT_DIR} \
--instance_prompt="style of sks" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps={int(steps)}') #,shell=True) #30000
print("*********** completing accelerate_train_lora ***********")
return "./output_example/lora_weight.pt"
with gr.Blocks() as demo:
with gr.Row():
in_images = gr.File(label="Upload images to fine-tune for LORA", file_count="multiple")
#in_prompt = gr.Textbox(label="Enter a ")
in_steps = gr.Number(label="Enter number of steps")
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit")
with gr.Row():
b1 = gr.Button(value="Train LORA model")
b2 = gr.Button(value="Inference using LORA model")
with gr.Row():
in_prompt = gr.Textbox(label="Enter a prompt for fine-tuned LORA model", visible=True)
out_image = gr.Image(label="Image generated by LORA model")
out_file = gr.File(label="Lora trained model weights", )
b1.click(fn = accelerate_train_lora, inputs=in_steps, outputs=out_file)
b2.click(fn = monkeypatching, inputs=[in_alpha, in_prompt], outputs=out_image)
demo.queue(concurrency_count=3)
demo.launch(debug=True, show_error=True)