Spaces:
Configuration error
Configuration error
update
Browse files
app.py
CHANGED
@@ -1,21 +1,12 @@
|
|
1 |
#https://github.com/huggingface/diffusers/tree/main/examples/dreambooth
|
2 |
-
#export
|
3 |
-
|
4 |
-
#export
|
5 |
-
|
6 |
-
#
|
7 |
-
|
8 |
-
# --instance_data_dir=$INSTANCE_DIR \
|
9 |
-
# --output_dir=$OUTPUT_DIR \
|
10 |
-
# --instance_prompt="style of sks" \
|
11 |
-
# --resolution=512 \
|
12 |
-
# --train_batch_size=1 \
|
13 |
-
# --gradient_accumulation_steps=1 \
|
14 |
-
# --learning_rate=1e-4 \
|
15 |
-
# --lr_scheduler="constant" \
|
16 |
-
# --lr_warmup_steps=0 \
|
17 |
-
# --max_train_steps=30000
|
18 |
|
|
|
19 |
from diffusers import StableDiffusionPipeline
|
20 |
from lora_diffusion import monkeypatch_lora, tune_lora_scale
|
21 |
import torch
|
@@ -25,7 +16,7 @@ import gradio as gr
|
|
25 |
import subprocess
|
26 |
# If your shell script has shebang,
|
27 |
# you can omit shell=True argument.
|
28 |
-
subprocess.run("./run_lora_db.sh", shell=True)
|
29 |
|
30 |
#####
|
31 |
model_id = "stabilityai/stable-diffusion-2-1-base"
|
@@ -38,22 +29,39 @@ finetuned_lora_weights = "./lora_weight.pt"
|
|
38 |
|
39 |
#####
|
40 |
#my fine tuned weights
|
41 |
-
def monkeypatching(
|
42 |
monkeypatch_lora(pipe.unet, torch.load(finetuned_lora_weights)) #"./lora_weight.pt"))
|
43 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
44 |
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
|
45 |
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
|
46 |
return image
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
with gr.Blocks() as demo:
|
49 |
with gr.Row():
|
50 |
-
in_images = gr.
|
51 |
#in_prompt = gr.Textbox(label="Enter a ")
|
52 |
in_steps = gr.Number(label="Enter number of steps")
|
53 |
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit")
|
54 |
-
b1 = gr.Button(value="
|
|
|
55 |
with gr.Row():
|
56 |
out_image = gr.Image(label="Image generated by LORA model")
|
57 |
-
b1.click(fn =
|
|
|
58 |
|
59 |
demo.launch(debug=True, show_error=True)
|
|
|
1 |
#https://github.com/huggingface/diffusers/tree/main/examples/dreambooth
|
2 |
+
#export
|
3 |
+
MODEL_NAME="stabilityai/stable-diffusion-2-1-base"
|
4 |
+
#export
|
5 |
+
INSTANCE_DIR="./data_example"
|
6 |
+
#export
|
7 |
+
OUTPUT_DIR="./output_example"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
|
10 |
from diffusers import StableDiffusionPipeline
|
11 |
from lora_diffusion import monkeypatch_lora, tune_lora_scale
|
12 |
import torch
|
|
|
16 |
import subprocess
|
17 |
# If your shell script has shebang,
|
18 |
# you can omit shell=True argument.
|
19 |
+
#subprocess.run("./run_lora_db.sh", shell=True)
|
20 |
|
21 |
#####
|
22 |
model_id = "stabilityai/stable-diffusion-2-1-base"
|
|
|
29 |
|
30 |
#####
|
31 |
#my fine tuned weights
|
32 |
+
def monkeypatching(alpha): #, prompt, pipe): finetuned_lora_weights
|
33 |
monkeypatch_lora(pipe.unet, torch.load(finetuned_lora_weights)) #"./lora_weight.pt"))
|
34 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
35 |
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
|
36 |
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
|
37 |
return image
|
38 |
+
|
39 |
+
def accelerate_train_lora(steps):
|
40 |
+
accelerate launch "./train_lora_dreambooth.py" \
|
41 |
+
--pretrained_model_name_or_path=MODEL_NAME \
|
42 |
+
--instance_data_dir=INSTANCE_DIR \
|
43 |
+
--output_dir=OUTPUT_DIR \
|
44 |
+
--instance_prompt="style of sks" \
|
45 |
+
--resolution=512 \
|
46 |
+
--train_batch_size=1 \
|
47 |
+
--gradient_accumulation_steps=1 \
|
48 |
+
--learning_rate=1e-4 \
|
49 |
+
--lr_scheduler="constant" \
|
50 |
+
--lr_warmup_steps=0 \
|
51 |
+
--max_train_steps=steps #30000
|
52 |
+
return
|
53 |
+
|
54 |
with gr.Blocks() as demo:
|
55 |
with gr.Row():
|
56 |
+
in_images = gr.File(label="Upload images to fine-tune for LORA", file_count="multiple")
|
57 |
#in_prompt = gr.Textbox(label="Enter a ")
|
58 |
in_steps = gr.Number(label="Enter number of steps")
|
59 |
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit")
|
60 |
+
b1 = gr.Button(value="Train LORA model")
|
61 |
+
b2 = gr.Button(value="Inference using LORA model")
|
62 |
with gr.Row():
|
63 |
out_image = gr.Image(label="Image generated by LORA model")
|
64 |
+
b1.click(fn = accelerate_train_lora, inputs=in_steps)
|
65 |
+
b2.click(fn = monkeypatching, inputs=in_alpha, outputs=out_image)
|
66 |
|
67 |
demo.launch(debug=True, show_error=True)
|