Spaces:
Configuration error
Configuration error
update example
Browse files
app.py
CHANGED
@@ -21,17 +21,17 @@ torch.manual_seed(1)
|
|
21 |
counter = 0
|
22 |
|
23 |
#Getting Lora fine-tuned weights
|
24 |
-
def monkeypatching(alpha, in_prompt,
|
25 |
print("****** inside monkeypatching *******")
|
26 |
print(f"in_prompt is - {str(in_prompt)}")
|
27 |
global counter
|
28 |
if counter == 0 :
|
29 |
-
if
|
30 |
-
monkeypatch_lora(pipe.unet, torch.load(
|
31 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
32 |
counter +=1
|
33 |
else:
|
34 |
-
monkeypatch_lora(pipe.unet, torch.load(
|
35 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
36 |
counter +=1
|
37 |
else :
|
@@ -81,17 +81,17 @@ with gr.Blocks() as demo:
|
|
81 |
gr.Markdown("Advance settings for a number of Training Steps and Alpha. Set alpha to 1.0 to fully add LORA. If the LORA seems to have too much effect (i.e., overfitting), set alpha to a lower value. If the LORA seems to have too little effect, set the alpha higher. You can tune these two values to your needs.")
|
82 |
in_steps = gr.Number(label="Enter the number of training steps", value = 4000)
|
83 |
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level", value=0.5)
|
84 |
-
out_file = gr.File(label="Lora trained model weights"
|
85 |
|
86 |
gr.Examples(
|
87 |
examples=[[0.65, "lion", "./lora_playgroundai_wt.pt" ]],
|
88 |
-
inputs=[in_alpha, in_prompt,
|
89 |
outputs=out_image,
|
90 |
fn=monkeypatching,
|
91 |
cache_examples=True,)
|
92 |
|
93 |
b1.click(fn = accelerate_train_lora, inputs=in_steps, outputs=out_file)
|
94 |
-
b2.click(fn = monkeypatching, inputs=[in_alpha, in_prompt,
|
95 |
|
96 |
demo.queue(concurrency_count=3)
|
97 |
demo.launch(debug=True, show_error=True)
|
|
|
21 |
counter = 0
|
22 |
|
23 |
#Getting Lora fine-tuned weights
|
24 |
+
def monkeypatching(alpha, in_prompt, wt): #, prompt, pipe): finetuned_lora_weights
|
25 |
print("****** inside monkeypatching *******")
|
26 |
print(f"in_prompt is - {str(in_prompt)}")
|
27 |
global counter
|
28 |
if counter == 0 :
|
29 |
+
if wt == "./lora_playgroundai_wt.pt" :
|
30 |
+
monkeypatch_lora(pipe.unet, torch.load(wt)) #finetuned_lora_weights
|
31 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
32 |
counter +=1
|
33 |
else:
|
34 |
+
monkeypatch_lora(pipe.unet, torch.load("./output_example/lora_weight.pt")) #finetuned_lora_weights
|
35 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
36 |
counter +=1
|
37 |
else :
|
|
|
81 |
gr.Markdown("Advance settings for a number of Training Steps and Alpha. Set alpha to 1.0 to fully add LORA. If the LORA seems to have too much effect (i.e., overfitting), set alpha to a lower value. If the LORA seems to have too little effect, set the alpha higher. You can tune these two values to your needs.")
|
82 |
in_steps = gr.Number(label="Enter the number of training steps", value = 4000)
|
83 |
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level", value=0.5)
|
84 |
+
out_file = gr.File(label="Lora trained model weights" )
|
85 |
|
86 |
gr.Examples(
|
87 |
examples=[[0.65, "lion", "./lora_playgroundai_wt.pt" ]],
|
88 |
+
inputs=[in_alpha, in_prompt, out_file],
|
89 |
outputs=out_image,
|
90 |
fn=monkeypatching,
|
91 |
cache_examples=True,)
|
92 |
|
93 |
b1.click(fn = accelerate_train_lora, inputs=in_steps, outputs=out_file)
|
94 |
+
b2.click(fn = monkeypatching, inputs=[in_alpha, in_prompt, out_file], outputs=out_image)
|
95 |
|
96 |
demo.queue(concurrency_count=3)
|
97 |
demo.launch(debug=True, show_error=True)
|