import math from typing import Callable, Dict, List, Optional, Tuple import numpy as np import PIL import torch import torch.nn.functional as F import torch.nn as nn class LoraInjectedLinear(nn.Module): def __init__(self, in_features, out_features, bias=False): super().__init__() self.linear = nn.Linear(in_features, out_features, bias) self.lora_down = nn.Linear(in_features, 4, bias=False) self.lora_up = nn.Linear(4, out_features, bias=False) self.scale = 1.0 nn.init.normal_(self.lora_down.weight, std=1 / 16) nn.init.zeros_(self.lora_up.weight) def forward(self, input): return self.linear(input) + self.lora_up(self.lora_down(input)) * self.scale def inject_trainable_lora( model: nn.Module, target_replace_module: List[str] = ["CrossAttention", "Attention"] ): """ inject lora into model, and returns lora parameter groups. """ require_grad_params = [] names = [] for _module in model.modules(): if _module.__class__.__name__ in target_replace_module: for name, _child_module in _module.named_modules(): if _child_module.__class__.__name__ == "Linear": weight = _child_module.weight bias = _child_module.bias _tmp = LoraInjectedLinear( _child_module.in_features, _child_module.out_features, _child_module.bias is not None, ) _tmp.linear.weight = weight if bias is not None: _tmp.linear.bias = bias # switch the module _module._modules[name] = _tmp require_grad_params.append( _module._modules[name].lora_up.parameters() ) require_grad_params.append( _module._modules[name].lora_down.parameters() ) _module._modules[name].lora_up.weight.requires_grad = True _module._modules[name].lora_down.weight.requires_grad = True names.append(name) return require_grad_params, names def extract_lora_ups_down(model, target_replace_module=["CrossAttention", "Attention"]): loras = [] for _module in model.modules(): if _module.__class__.__name__ in target_replace_module: for _child_module in _module.modules(): if _child_module.__class__.__name__ == "LoraInjectedLinear": loras.append((_child_module.lora_up, _child_module.lora_down)) if len(loras) == 0: raise ValueError("No lora injected.") return loras def save_lora_weight(model, path="./lora.pt"): weights = [] for _up, _down in extract_lora_ups_down(model): weights.append(_up.weight) weights.append(_down.weight) torch.save(weights, path) def save_lora_as_json(model, path="./lora.json"): weights = [] for _up, _down in extract_lora_ups_down(model): weights.append(_up.weight.detach().cpu().numpy().tolist()) weights.append(_down.weight.detach().cpu().numpy().tolist()) import json with open(path, "w") as f: json.dump(weights, f) def weight_apply_lora( model, loras, target_replace_module=["CrossAttention", "Attention"], alpha=1.0 ): for _module in model.modules(): if _module.__class__.__name__ in target_replace_module: for _child_module in _module.modules(): if _child_module.__class__.__name__ == "Linear": weight = _child_module.weight up_weight = loras.pop(0).detach().to(weight.device) down_weight = loras.pop(0).detach().to(weight.device) # W <- W + U * D weight = weight + alpha * (up_weight @ down_weight).type( weight.dtype ) _child_module.weight = nn.Parameter(weight) def monkeypatch_lora( model, loras, target_replace_module=["CrossAttention", "Attention"] ): for _module in model.modules(): if _module.__class__.__name__ in target_replace_module: for name, _child_module in _module.named_modules(): if _child_module.__class__.__name__ == "Linear": weight = _child_module.weight bias = _child_module.bias _tmp = LoraInjectedLinear( _child_module.in_features, _child_module.out_features, _child_module.bias is not None, ) _tmp.linear.weight = weight if bias is not None: _tmp.linear.bias = bias # switch the module _module._modules[name] = _tmp up_weight = loras.pop(0) down_weight = loras.pop(0) _module._modules[name].lora_up.weight = nn.Parameter( up_weight.type(weight.dtype) ) _module._modules[name].lora_down.weight = nn.Parameter( down_weight.type(weight.dtype) ) _module._modules[name].to(weight.device) def tune_lora_scale(model, alpha: float = 1.0): for _module in model.modules(): if _module.__class__.__name__ == "LoraInjectedLinear": _module.scale = alpha