Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
# Installing flash_attn | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import gradio as gr | |
from PIL import Image | |
from transformers import AutoModelForCausalLM | |
from transformers import AutoProcessor | |
from transformers import TextIteratorStreamer | |
import time | |
from threading import Thread | |
import torch | |
import spaces | |
model_id = "microsoft/Phi-3-vision-128k-instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto") | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
model.to("cuda:0") | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/microsoft/Phi-3-vision-128k-instruct.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Microsoft's Phi3-Vision-128k-Context</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Phi-3-Vision is a 4.2B parameter multimodal model that brings together language and vision capabilities.</p> | |
</div> | |
""" | |
def bot_streaming(message, history): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
if message["files"]: | |
# message["files"][-1] is a Dict or just a string | |
if type(message["files"][-1]) == dict: | |
image = message["files"][-1]["path"] | |
else: | |
image = message["files"][-1] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
# kept inside tuples, take the last one | |
for hist in history: | |
if type(hist[0]) == tuple: | |
image = hist[0][0] | |
try: | |
if image is None: | |
# Handle the case where image is None | |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.") | |
except NameError: | |
# Handle the case where 'image' is not defined at all | |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.") | |
conversation = [] | |
flag=False | |
for user, assistant in history: | |
if assistant is None: | |
#pass | |
flag=True | |
conversation.extend([{"role": "user", "content":""}]) | |
continue | |
if flag==True: | |
conversation[0]['content'] = f"<|image_1|>\n{user}" | |
conversation.extend([{"role": "assistant", "content": assistant}]) | |
flag=False | |
continue | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
if len(history) == 0: | |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"}) | |
else: | |
conversation.append({"role": "user", "content": message['text']}) | |
print(f"prompt is -\n{conversation}") | |
#prompt = f"""User:<image>\n{message['text']} Falcon:""" | |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
image = Image.open(image) | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
#inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) # "eos_token_id":processor.tokenizer.eos_token_id}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
# find <|eot_id|> and remove it from the new_text | |
#if "<|eot_id|>" in new_text: | |
# new_text = new_text.split("<|eot_id|>")[0] | |
buffer += new_text | |
yield buffer | |
chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER) | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
with gr.Blocks(fill_height=True, ) as demo: | |
gr.ChatInterface( | |
fn=bot_streaming, | |
title="Phi3 Vision 128K Instruct", | |
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files": ["./baklava.png"]}], | |
description="Try [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct). Upload an image and start chatting about it, or simply try one of the examples below. If you won't upload an image, you will receive an error.", | |
stop_btn="Stop Generation", | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
cache_examples=False, | |
) | |
demo.queue() | |
demo.launch(debug=True, quiet=True) | |