File size: 12,511 Bytes
c3fdfdd dc93c04 0793539 dc93c04 c3fdfdd dc93c04 f9bf036 dc93c04 f9bf036 dc93c04 a61f8e8 dc93c04 f9bf036 dc93c04 f9bf036 dc93c04 f9bf036 dc93c04 f9bf036 c3fdfdd 0793539 dc93c04 0793539 dc93c04 0793539 c3fdfdd dc93c04 c3fdfdd 0793539 c3fdfdd dc93c04 c3fdfdd 0793539 c3fdfdd 0793539 c3fdfdd dc93c04 c3fdfdd dc93c04 c3fdfdd dc93c04 c3fdfdd dc93c04 c3fdfdd dc93c04 c3fdfdd dc93c04 c3fdfdd 2aee27c dc93c04 0793539 dc93c04 0793539 c3fdfdd 8bbbd7a c3fdfdd 0793539 dc93c04 c3fdfdd 2967cfa 0793539 2967cfa c3fdfdd dc93c04 0793539 dc93c04 0793539 dc93c04 0793539 dc93c04 c3fdfdd 2967cfa dc93c04 2967cfa 0793539 c3fdfdd dc93c04 c3fdfdd f9bf036 dc93c04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
from crewai import Agent, Task, Crew
import gradio as gr
import asyncio
from typing import List, Generator, Any, Dict, Union
from langchain_openai import ChatOpenAI
import queue
import threading
import os
class AgentMessageQueue:
def __init__(self):
self.message_queue = queue.Queue()
self.final_output = None
def add_message(self, message: Dict):
self.message_queue.put(message)
def get_messages(self) -> List[Dict]:
messages = []
while not self.message_queue.empty():
messages.append(self.message_queue.get())
return messages
def set_final_output(self, output: str):
self.final_output = output
def get_final_output(self) -> str:
return self.final_output
class ArticleCrew:
def __init__(self, api_key: str = None):
self.api_key = api_key
self.message_queue = AgentMessageQueue()
self.planner = None
self.writer = None
self.editor = None
def initialize_agents(self, topic: str):
if not self.api_key:
raise ValueError("OpenAI API key is required")
os.environ["OPENAI_API_KEY"] = self.api_key
llm = ChatOpenAI(
temperature=0.7,
model="gpt-4"
)
self.planner = Agent(
role="Content Planner",
goal=f"Plan engaging and factually accurate content on {topic}",
backstory=f"You're working on planning a blog article about the topic: {topic}. "
"You collect information that helps the audience learn something "
"and make informed decisions.",
allow_delegation=False,
verbose=True,
llm=llm
)
self.writer = Agent(
role="Content Writer",
goal=f"Write insightful and factually accurate opinion piece about the topic: {topic}",
backstory=f"You're working on writing a new opinion piece about the topic: {topic}. "
"You base your writing on the work of the Content Planner.",
allow_delegation=False,
verbose=True,
llm=llm
)
self.editor = Agent(
role="Editor",
goal="Edit a given blog post to align with the writing style",
backstory="You are an editor who receives a blog post from the Content Writer.",
allow_delegation=False,
verbose=True,
llm=llm
)
def create_tasks(self, topic: str):
if not self.planner or not self.writer or not self.editor:
self.initialize_agents(topic)
plan_task = Task(
description=(
f"1. Prioritize the latest trends, key players, and noteworthy news on {topic}.\n"
f"2. Identify the target audience, considering their interests and pain points.\n"
f"3. Develop a detailed content outline including introduction, key points, and call to action.\n"
f"4. Include SEO keywords and relevant data or sources."
),
expected_output="A comprehensive content plan document with an outline, audience analysis, SEO keywords, and resources.",
agent=self.planner
)
write_task = Task(
description=(
"1. Use the content plan to craft a compelling blog post.\n"
"2. Incorporate SEO keywords naturally.\n"
"3. Sections/Subtitles are properly named in an engaging manner.\n"
"4. Ensure proper structure with introduction, body, and conclusion.\n"
"5. Proofread for grammatical errors."
),
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.writer
)
edit_task = Task(
description="Proofread the given blog post for grammatical errors and alignment with the brand's voice.",
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.editor
)
return [plan_task, write_task, edit_task]
async def process_article(self, topic: str) -> Generator[List[Dict], None, None]:
def step_callback(output: Any) -> None:
try:
output_str = str(output).strip()
# Extract agent name
if "# Agent:" in output_str:
agent_name = output_str.split("# Agent:")[1].split("\n")[0].strip()
else:
agent_name = "Agent"
# Extract task or final answer
if "## Task:" in output_str:
content = output_str.split("## Task:")[1].split("\n#")[0].strip()
self.message_queue.add_message({
"role": "assistant",
"content": content,
"metadata": {"title": f"π {agent_name}'s Task"}
})
elif "## Final Answer:" in output_str:
content = output_str.split("## Final Answer:")[1].strip()
if agent_name == "Editor":
# For Editor's final answer, store it for later
self.message_queue.set_final_output(content)
self.message_queue.add_message({
"role": "assistant",
"content": content,
"metadata": {"title": f"β
{agent_name}'s Output"}
})
else:
self.message_queue.add_message({
"role": "assistant",
"content": output_str,
"metadata": {"title": f"π {agent_name} thinking"}
})
except Exception as e:
print(f"Error in step_callback: {str(e)}")
def task_callback(output: Any) -> None:
try:
content = str(output)
if hasattr(output, 'agent'):
agent_name = str(output.agent)
else:
agent_name = "Agent"
self.message_queue.add_message({
"role": "assistant",
"content": content.strip(),
"metadata": {"title": f"β
Task completed by {agent_name}"}
})
# If this is the Editor's task completion, add the final article
if agent_name == "Editor":
final_content = self.message_queue.get_final_output()
if final_content:
self.message_queue.add_message({
"role": "assistant",
"content": "Here's your completed article:",
"metadata": {"title": "π Final Article"}
})
self.message_queue.add_message({
"role": "assistant",
"content": final_content
})
self.message_queue.add_message({
"role": "assistant",
"content": "Article generation completed!",
"metadata": {"title": "β¨ Complete"}
})
except Exception as e:
print(f"Error in task_callback: {str(e)}")
self.initialize_agents(topic)
crew = Crew(
agents=[self.planner, self.writer, self.editor],
tasks=self.create_tasks(topic),
verbose=True,
step_callback=step_callback,
task_callback=task_callback
)
# Start notification
yield [{
"role": "assistant",
"content": "Starting work on your article...",
"metadata": {"title": "π Process Started"}
}]
# Run crew in a separate thread
result_container = []
def run_crew():
try:
result = crew.kickoff(inputs={"topic": topic})
result_container.append(result)
except Exception as e:
result_container.append(e)
print(f"Error occurred: {str(e)}")
thread = threading.Thread(target=run_crew)
thread.start()
# Stream messages while crew is working
while thread.is_alive() or not self.message_queue.message_queue.empty():
messages = self.message_queue.get_messages()
if messages:
yield messages
await asyncio.sleep(0.1)
def create_demo():
article_crew = None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π AI Article Writing Crew")
gr.Markdown("Watch as this AI Crew collaborates to create your article! This application utilizes [CrewAI](https://www.crewai.com/) agents: Content Planner, Content Writer, and Content Editor, to write an article on any topic you choose. To get started, enter your OpenAI API Key below and press Enter!")
openai_api_key = gr.Textbox(
label='OpenAI API Key',
type='password',
placeholder='Type your OpenAI API key and press Enter!',
interactive=True
)
chatbot = gr.Chatbot(
label="Writing Process",
avatar_images=(None, "https://avatars.githubusercontent.com/u/170677839?v=4"),
height=700,
type="messages",
show_label=True,
visible=False,
value=[]
)
with gr.Row(equal_height=True):
topic = gr.Textbox(
label="Article Topic",
placeholder="Enter the topic you want an article about...",
scale=4,
visible=False
)
async def process_input(topic, history, api_key):
nonlocal article_crew
if not api_key:
history.append({
"role": "assistant",
"content": "Please provide an OpenAI API key first.",
"metadata": {"title": "β Error"}
})
yield history # Changed from return to yield
return # Early return without value
# Initialize or update ArticleCrew with API key
if article_crew is None:
article_crew = ArticleCrew(api_key=api_key)
else:
article_crew.api_key = api_key
# Add user message
history.append({
"role": "user",
"content": f"Write an article about: {topic}"
})
yield history
try:
async for messages in article_crew.process_article(topic):
history.extend(messages)
yield history
except Exception as e:
history.append({
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "β Error"}
})
yield history
btn = gr.Button("Write Article", variant="primary", scale=1, visible=False)
def show_interface():
return {
openai_api_key: gr.Textbox(visible=False),
chatbot: gr.Chatbot(visible=True),
topic: gr.Textbox(visible=True),
btn: gr.Button(visible=True)
}
openai_api_key.submit(
show_interface,
None,
[openai_api_key, chatbot, topic, btn]
)
btn.click(
process_input,
inputs=[topic, chatbot, openai_api_key], # Added openai_api_key back as input
outputs=[chatbot]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch(debug=True) |