Spaces:
Runtime error
Runtime error
File size: 6,947 Bytes
230feb9 eec14a9 230feb9 70dfd40 230feb9 816523e 230feb9 5e128e1 9c37fd7 4c0e317 70dfd40 230feb9 3366bb0 ac47b95 3366bb0 70dfd40 3366bb0 4978bf7 3366bb0 4978bf7 3366bb0 cd0b91f 4978bf7 7611fed 3366bb0 70dfd40 3366bb0 230feb9 817f443 230feb9 70dfd40 ac47b95 fba21b8 230feb9 60826d9 eec14a9 817f443 dcd0322 e095f1c 817f443 5b9fc64 a3478cf dcd0322 6cf144f f50b6a2 a2657fd 6cf144f 230feb9 f902b80 b036d2a 4e54cd8 063bf56 f8ce710 4e54cd8 063bf56 2100671 3366bb0 d097c3a 230feb9 c49d20b 230feb9 5a8dedb 230feb9 19e6c05 b5e28dd 510f936 162a61b e8037e0 3366bb0 ac47b95 70dfd40 72aba1d 7611fed 70dfd40 817f443 3366bb0 72aba1d c49d20b 89577da 230feb9 817f443 d71a252 d32064a 230feb9 dcf8851 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
import requests
import os
import PIL
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
##Bloom
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
#Complete below sentence in fun way.
prompt4 = """Distracted from: hubble
by: james webb
Distracted from: homework
by: side project
Distracted from: goals
by: new goals
Distracted from:
"""
prompt5 = """Distracted from: homework
by: side project
Distracted from: goals
by: new goals
Distracted from: working hard
by: hardly working
Distracted from: twitter
by: open in browser
Distracted from:
"""
"""Distracted from: homework
by: side project
Distracted from: goals
by: new goals
Distracted from: working hard
by: hardly working
Distracted from: twitter
by: open in browser
Distracted from: code
by: blog post
Distracted from: code
by: blog post
Distracted from:"""
#prompt = """Distracted from: homework\nby: side project\nDistracted from: goals\nby: new goals\nDistracted from: working hard\nby: hardly working\nDistracted from: twitter\nby: open in browser\nDistracted from:"""
def write_on_image(final_solution):
print("************ Inside write_on_image ***********")
image_path0 = "./distracted0.jpg"
image0 = Image.open(image_path0)
I1 = ImageDraw.Draw(image0)
myfont = ImageFont.truetype('./font1.ttf', 30)
prompt_list = final_solution.split('\n')
girlfriend = prompt_list[8].split(':')[1].strip()
print(f"girlfriend is : {girlfriend }")
new_girl = prompt_list[9].split(':')[1].strip()
print(f"new_girl is : {new_girl}")
prompt_list.pop(0)
prompt_list.pop(0)
prompt_list = prompt_list[:8]
prompt_list.append('Distracted from:')
print(f"prompt list is : {prompt_list}")
new_prompt = '\n'.join(prompt_list)
print(f"final_solution is : {new_prompt}")
I1.text((613, 89), girlfriend,font=myfont, fill =(255, 255, 255))
I1.text((371, 223), "ME", font=myfont, fill =(255, 255, 255))
I1.text((142, 336), new_girl,font=myfont, fill =(255, 255, 255))
return image0, new_prompt
def meme_generate(img, prompt, temp, top_p): #prompt, generated_txt): #, input_prompt_sql ): #, input_prompt_dalle2):
print(f"*****Inside meme_generate - Prompt is :{prompt}")
if len(prompt) == 0:
prompt = """Distracted from: homework\nby: side project\nDistracted from: goals\nby: new goals\nDistracted from: working hard\nby: hardly working\nDistracted from: twitter\nby: open in browser\nDistracted from:"""
json_ = {"inputs": prompt,
"parameters":
{
#"top_p": 0.95,
"top_p": top_p, #0.90,
#"top_k":0,
"max_new_tokens": 250,
"temperature": temp, #1.1,
#"num_return_sequences": 3,
"return_full_text": True,
"do_sample": True,
},
"options":
{"use_cache": True,
"wait_for_model": True,
},}
response = requests.post(API_URL, headers=headers, json=json_)
print(f"Response is : {response}")
output = response.json()
print(f"output is : {output}")
output_tmp = output[0]['generated_text']
print(f"output_tmp is: {output_tmp}")
solution = output_tmp.split("\nQ:")[0]
print(f"Final response after splits is: {solution}")
meme_image, new_prompt = write_on_image(solution)
return meme_image, new_prompt #final_solution #display_output, new_prompt #generated_txt+prompt
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>Testing</center></h1>")
gr.Markdown(
"""Work In Progress"""
)
with gr.Row():
#example_prompt = gr.Radio( ["Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?\nA: Let’s think step by step.\n"], label= "Choose a sample Prompt")
#example_prompt = gr.Radio( [
#"Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: How many users signed up in the past month?\nPostgreSQL query: ",
#"Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: Create a query that displays empfname, emplname, deptid, deptname, location from employee table. Results should be in the ascending order based on the empfname and location.\nPostgreSQL query: ",
#"Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use tables called 'employees'.\nInput: What is the total salary paid to all the employees?\nPostgreSQL query: ",
#"Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use tables called 'employees'.\nInput: List names of all the employees whose name end with 'r'.\nPostgreSQL query: ",
#"Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use tables called 'employees'.\nInput: What are the number of employees in each department?\nPostgreSQL query: ",
#"Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all theemployees who have third character in their name as 't'.\nPostgreSQL query: ",
#"Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all the employees who are working under 'Peter'\nPostgreSQL query: ", ], label= "Choose a sample Prompt")
#"Dalle Prompt: Cyberwave vaporpunk art of a kneeling figure, looking up at a glowing neon book icon, smoke and mist, pink and blue lighting, cybernetic sci-fi render\nNew Dalle Prompt: " ], label= "Choose a sample Prompt")
#with gr.Row():
in_image = gr.Image(value="./distracted0.jpg", visible=False)
in_image_display = gr.Image(value="./distracted00.jpg", visible=True)
input_prompt = gr.Textbox(label="Write some prompt...", lines=5, visible=False)
#value = """Distracted from: homework\nby: side project\nDistracted from: goals\nby: new goals\nDistracted from: working hard\nby: hardly
#with gr.Row():
#generated_txt = gr.Textbox(lines=7, visible = True)
#with gr.Row():
output_image = gr.Image() #type="filepath", shape=(256,256))
with gr.Row():
in_slider_temp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label='Temperature')
in_slider_top_p = gr.Slider(minimum=0.50, maximum=0.99, value=0.90, step=0.01, label='Top_p')
#output_prompt = gr.Textbox(label="Text generated", lines=5)
b1 = gr.Button("Generate")
#b2 = gr.Button("Generate Image")
b1.click(meme_generate, inputs=[in_image, input_prompt, in_slider_temp, in_slider_top_p] , outputs=[output_image,input_prompt]) #output_prompt
#b2.click(poem_to_image, poem_txt, output_image)
#examples=examples
demo.launch(enable_queue=True, debug=True) |