File size: 23,563 Bytes
392065a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "2"
import tensorflow as tf
import gradio as gr
import tensorflow_hub as hub
import random
import time
import PIL.Image
from PIL import Image
import numpy as np
import requests
from io import BytesIO
# from diffusers import StableDiffusionUpscalePipeline
from simple_lama_inpainting import SimpleLama
import torch
from shutil import copyfile
from PowerPaint import app
import argparse

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i,j] == True :
                mask[i,j] = 1
    mask = (mask*255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask

def tensor_to_image(tensor):
    tensor = tensor*255
    tensor = np.array(tensor, dtype=np.uint8)
    if np.ndim(tensor)>3:
        assert tensor.shape[0] == 1
        tensor = tensor[0]
    return PIL.Image.fromarray(tensor)

def load_img(path_to_img):
    max_dim = 512
    img = tf.io.read_file(path_to_img)
    img = tf.image.decode_image(img, channels=3)
    img = tf.image.convert_image_dtype(img, tf.float32)

    shape = tf.cast(tf.shape(img)[:-1], tf.float32)
    long_dim = max(shape)
    scale = max_dim / long_dim

    new_shape = tf.cast(shape * scale, tf.int32)

    img = tf.image.resize(img, new_shape)
    img = img[tf.newaxis, :]
    return img

# Do main logic (simple version)
def start_stylize_simple(img, style_img):
    
    # global hub_model
    hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')

    # Save to disk, put random number as a ID to avoid collision
    ID = int(time.time())
    img.save(filepath + f'/tmp/tmp_image-{ID}.jpg')
    style_img.save(filepath + f'/tmp/tmp_style_image-{ID}.jpg')
    
    # Load the input images.
    content_image = load_img(filepath + f'/tmp/tmp_image-{ID}.jpg')
    style_image = load_img(filepath + f'/tmp/tmp_style_image-{ID}.jpg')

    stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
    tensor_to_image(stylized_image).save(filepath + f'/tmp/result-{ID}.jpg')

    return filepath + f'/tmp/result-{ID}.jpg'

def background_remove(img):
    from rembg import new_session
    from rembg import remove
    session = new_session('isnet-general-use')
    # Save to disk, put random number as a ID to avoid collision
    ID = int(time.time())
    img.save(filepath + f'/tmp/tmp_image-{ID}.jpg')

    with open(filepath + f'/tmp/tmp_image-{ID}.jpg', 'rb') as i:
        with open(filepath + f'/tmp/tmp_result-{ID}.jpg', 'wb') as o:
            input = i.read()
            output = remove(input, session = session)
            o.write(output)

    return filepath + f'/tmp/tmp_result-{ID}.jpg'

def object_remove(imgs):
    ts = int(time.time())
    os.mkdir(filepath + f'/tmp/tmp_image-{ts}')
    os.mkdir(filepath + f'/tmp/tmp_mask-{ts}')
    os.mkdir(filepath + f'/tmp/tmp_output-{ts}')
    img = imgs["background"].convert("RGB")
    mask = pil_to_binary_mask(imgs['layers'][-1].convert("RGB"))
    img.save(filepath + f'/tmp/tmp_image-{ts}/image.png')
    mask.save(filepath + f'/tmp/tmp_mask-{ts}/image.png')

    simple_lama = SimpleLama()
    img_path = filepath + f'/tmp/tmp_image-{ts}/image.png'
    mask_path = filepath + f'/tmp/tmp_mask-{ts}/image.png'

    image = Image.open(img_path)
    mask = Image.open(mask_path).convert('L')

    result = simple_lama(image, mask)
    result.save(f"{filepath}/tmp/tmp_output-{ts}/image.png")

    # os.system(f'simple_lama {filepath}/tmp/tmp_image-{ts}/image.png {filepath}/tmp/tmp_mask-{ts}/image.png {filepath}/tmp/tmp_output-{ts}/image.png')
    # os.system(f'iopaint run --model=lama --device=cuda --image={filepath}/tmp/tmp_image-{ts} --mask={filepath}/tmp/tmp_mask-{ts} --output={filepath}/tmp/tmp_output-{ts}')
    # filename = os.listdir(filepath + f'/tmp/tmp_output-{ts}')[0]
    return filepath + f'/tmp/tmp_output-{ts}/image.png'

def upscale(img): #, prompt, upscale_radio):
    # Save to disk, put random number as a ID to avoid collision
    ID = int(time.time())
    img.save(filepath + f'/tmp/tmp_image-{ID}.jpg')

    if False: #upscale_radio == 'Stable Diffusion x4 upscaler':

        # load model and scheduler
        model_id = "stabilityai/stable-diffusion-x4-upscaler"
        pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
        pipeline = pipeline.to("cuda")

        # let's download an  image
        #url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png"
        #response = requests.get(url)
        low_res_img = Image.open(filepath + f'/tmp/tmp_image-{ID}.jpg')
        width, height = low_res_img.size
        low_res_img = low_res_img.resize((128, 128))

        # prompt = "a white cat"

        upscaled_image = pipeline(prompt = prompt, image=low_res_img).images[0]
        upscaled_image.resize((width, height)).save(filepath + f'/tmp/tmp_result-{ID}.jpg')
        # Image.open(filepath + f'/tmp/tmp_result-{ID}.jpg').resize((width, height))

    else:
        os.system(f'python3 {filepath}/Real-ESRGAN/inference_realesrgan.py -n RealESRGAN_x4plus -i {filepath}/tmp/tmp_image-{ID}.jpg')
        copyfile(f'{filepath}/results/tmp_image-{ID}_out.jpg', f'{filepath}/tmp/tmp_result-{ID}.jpg')
        
    return filepath + f'/tmp/tmp_result-{ID}.jpg'

def in_painting(*args):
    ID = int(time.time())
    global flag
    global controller
    if flag == 0:
        try:
            controller = app.PowerPaintController(weight_dtype, "./checkpoints/ppt-v1", True, "ppt-v1")
            flag += 1
        except:
            controller = app.PowerPaintController(weight_dtype, "./checkpoints/ppt-v1", False, "ppt-v1")
        
    result = controller.infer(*args)[0][0]
    result.save(f'{filepath}/tmp/tmp_result-{ID}.jpg')
    return f'{filepath}/tmp/tmp_result-{ID}.jpg'

def radio_click(choice):
    if choice == "Art style transfer":
        return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)]
    elif choice == "Object erasing":
        return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)]
    elif choice == "In painting":
        return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)]
    elif choice == "Background removal":
        return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)]
    elif choice == "Image upscaling":
        return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)]
    else:
        return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)]
    
if __name__ == '__main__':
    args = argparse.ArgumentParser()
    args.add_argument("--weight_dtype", type=str, default="float16")
    args.add_argument("--checkpoint_dir", type=str, default="./checkpoints/ppt-v1")
    args.add_argument("--version", type=str, default="ppt-v1")
    args.add_argument("--share", action="store_true")
    args.add_argument(
        "--local_files_only", action="store_true", help="enable it to use cached files without requesting from the hub"
    )
    args.add_argument("--port", type=int, default=7860)
    args = args.parse_args()

    # initialize the pipeline controller
    weight_dtype = torch.float16 if args.weight_dtype == "float16" else torch.float32
    flag = 0

    filepath = os.path.dirname(os.path.abspath(__file__))
    
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    for i in physical_devices:
        tf.config.experimental.set_memory_growth(i, True)

    os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
    # hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
    
    os.environ['GRADIO_TEMP_DIR']="/home/gradio_demos/tmp"
    with gr.Blocks() as demo:
        gr.Markdown("# Image2Image Demos")

        #radio = gr.Radio(["Art style transfer", "Object erasing", "In painting", "Background removal", "Image upscaling"], value="Art style transfer", label = "Choose functionality")
        radio = gr.Radio(["Art style transfer", "Object erasing", "In painting", "Background removal", "Image upscaling"], value="Art style transfer", label = "Choose functionality")
        with gr.Column(visible = True) as art_style_transfer_block:
            gr.Markdown("## Art style transfer")
            gr.Markdown("### Using [arbitrary-image-stylization-v1](https://www.kaggle.com/models/google/arbitrary-image-stylization-v1/tensorFlow1/256/2) model")
            with gr.Row():
                with gr.Column():
                    img = gr.Image(sources='upload', type="pil", label='Image to apply art style')
                    
                    img_list = os.listdir(filepath + "/images")
                    img_list_path = [os.path.join(filepath + "/images", image) for image in img_list]

                    example = gr.Examples(
                        inputs=img,
                        examples_per_page=6,
                        examples=img_list_path
                    )
                with gr.Column():
                    style_img = gr.Image(label="Art syle image", sources='upload', type="pil")
                    
                    style_list = os.listdir(filepath + "/style_images")
                    style_list_path = [os.path.join(filepath + "/style_images", style_image) for style_image in style_list]

                    example = gr.Examples(
                        inputs=style_img,
                        examples_per_page=6,
                        examples=style_list_path
                    )
                with gr.Column():
                    # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
                    image_out = gr.Image(label="Stylized image", elem_id="output-img" ,show_share_button=False, type = 'filepath')

            stylize_button = gr.Button(value="Stylize")
        
        with gr.Column(visible = False) as object_erasing_block:
            gr.Markdown("## Object erasing")
            gr.Markdown("### Using [lama](https://github.com/enesmsahin/simple-lama-inpainting) model")
            with gr.Row():
                with gr.Column():
                    imgs4 = gr.ImageEditor(sources='upload', type="pil", label='Image to erase object', interactive=True)
                    
                    img_list = os.listdir(filepath + "/images4")
                    img_list_path = [os.path.join(filepath + "/images4", image) for image in img_list]

                    example = gr.Examples(
                        inputs=imgs4,
                        examples_per_page=6,
                        examples=img_list_path
                    )
                with gr.Column():
                    image_out4 = gr.Image(label="Object removed image" ,show_share_button=False, type = 'filepath')

            object_remove_button = gr.Button(value="Remove object")

        with gr.Column(visible = False) as in_painting_block:
            gr.Markdown("## In painting")
            gr.Markdown("### Using [Powerpaint](https://github.com/open-mmlab/PowerPaint) model")
            with gr.Row():
                with gr.Column():
                    #gr.Markdown("### Input image and draw mask")
                    input_image = gr.ImageEditor(sources="upload", type="pil", label='Image to in-paint', interactive=True)
                    
                    img_list = os.listdir(filepath + "/images4")
                    img_list_path = [os.path.join(filepath + "/images4", image) for image in img_list]

                    example = gr.Examples(
                        inputs=input_image,
                        examples_per_page=6,
                        examples=img_list_path
                    )

                    task = gr.Radio(
                        ["text-guided", "object-removal", "shape-guided", "image-outpainting"],
                        show_label=False,
                        visible=False,
                    )

                    # Text-guided object inpainting
                    with gr.Tab("Text-guided object inpainting") as tab_text_guided:
                        enable_text_guided = gr.Checkbox(
                            label="Enable text-guided object inpainting", value=True, interactive=False, visible = False
                        )
                        text_guided_prompt = gr.Textbox(label="Prompt")
                        text_guided_negative_prompt = gr.Textbox(label="negative_prompt")
                        tab_text_guided.select(fn=app.select_tab_text_guided, inputs=None, outputs=task)

                        # currently, we only support controlnet in PowerPaint-v1
                        if args.version == "ppt-v1":
                            # gr.Markdown("### Controlnet setting")
                            enable_control = gr.Checkbox(
                                label="Enable controlnet", info="Enable this if you want to use controlnet", visible = False
                            )
                            controlnet_conditioning_scale = gr.Slider(
                                label="controlnet conditioning scale",
                                minimum=0,
                                maximum=1,
                                step=0.05,
                                value=0.5,
                                visible = False
                            )
                            control_type = gr.Radio(["canny", "pose", "depth", "hed"], label="Control type", visible = False)
                            input_control_image = gr.ImageEditor(sources="upload", type="pil", visible = False)

                    # Object removal inpainting
                    with gr.Tab("Object removal inpainting", visible = False) as tab_object_removal:
                        enable_object_removal = gr.Checkbox(
                            label="Enable object removal inpainting",
                            value=True,
                            info="The recommended configuration for the Guidance Scale is 10 or higher. \
                            If undesired objects appear in the masked area, \
                            you can address this by specifically increasing the Guidance Scale.",
                            interactive=False,
                        )
                        removal_prompt = gr.Textbox(label="Prompt")
                        removal_negative_prompt = gr.Textbox(label="negative_prompt")
                    tab_object_removal.select(fn=app.select_tab_object_removal, inputs=None, outputs=task)

                    # Object image outpainting
                    with gr.Tab("Image outpainting", visible = False) as tab_image_outpainting:
                        enable_object_removal = gr.Checkbox(
                            label="Enable image outpainting",
                            value=True,
                            info="The recommended configuration for the Guidance Scale is 10 or higher. \
                            If unwanted random objects appear in the extended image region, \
                                you can enhance the cleanliness of the extension area by increasing the Guidance Scale.",
                            interactive=False,
                        )
                        outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
                        outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
                        horizontal_expansion_ratio = gr.Slider(
                            label="horizontal expansion ratio",
                            minimum=1,
                            maximum=4,
                            step=0.05,
                            value=1,
                        )
                        vertical_expansion_ratio = gr.Slider(
                            label="vertical expansion ratio",
                            minimum=1,
                            maximum=4,
                            step=0.05,
                            value=1,
                        )
                    tab_image_outpainting.select(fn=app.select_tab_image_outpainting, inputs=None, outputs=task)

                    # Shape-guided object inpainting
                    with gr.Tab("Shape-guided object inpainting", visible = False) as tab_shape_guided:
                        enable_shape_guided = gr.Checkbox(
                            label="Enable shape-guided object inpainting", value=True, interactive=False
                        )
                        shape_guided_prompt = gr.Textbox(label="shape_guided_prompt")
                        shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt")
                        fitting_degree = gr.Slider(
                            label="fitting degree",
                            minimum=0,
                            maximum=1,
                            step=0.05,
                            value=1,
                        )
                    tab_shape_guided.select(fn=app.select_tab_shape_guided, inputs=None, outputs=task)

                    seed = gr.Slider(
                            label="Seed",
                            minimum=0,
                            maximum=2147483647,
                            step=1,
                            randomize=True,
                        )

                    
                    with gr.Accordion("Advanced options", open=False, visible = False):
                        ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
                        scale = gr.Slider(
                            label="Guidance Scale",
                            info="For object removal and image outpainting, it is recommended to set the value at 10 or above.",
                            minimum=0.1,
                            maximum=30.0,
                            value=7.5,
                            step=0.1,
                        )
                        
                with gr.Column():
                    # gr.Markdown("### Inpainting result")
                    # inpaint_result = gr.Gallery(label="Generated image", show_label=True, columns=1)
                    inpaint_result = gr.Image(label="Generated image", elem_id="output-img" ,show_share_button=False, type = 'filepath')
                    #gr.Markdown("### Mask")
                    gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2, visible = False)

            run_button = gr.Button(value="In-paint")
            run_button.click(
                fn=in_painting, #controller.infer,
                inputs=[
                    input_image,
                    text_guided_prompt,
                    text_guided_negative_prompt,
                    shape_guided_prompt,
                    shape_guided_negative_prompt,
                    fitting_degree,
                    ddim_steps,
                    scale,
                    seed,
                    task,
                    vertical_expansion_ratio,
                    horizontal_expansion_ratio,
                    outpaint_prompt,
                    outpaint_negative_prompt,
                    removal_prompt,
                    removal_negative_prompt,
                    enable_control,
                    input_control_image,
                    control_type,
                    controlnet_conditioning_scale,
                ],
                outputs=[inpaint_result]#, gallery],
            )
        
        with gr.Column(visible = False) as background_removal_block:
            gr.Markdown("## Background removal")
            gr.Markdown("### Using [rembg](https://pypi.org/project/rembg/) model")
            with gr.Row():
                with gr.Column():
                    img2 = gr.Image(sources='upload', type="pil", label='Image to remove background')
                    
                    img_list = os.listdir(filepath + "/images2")
                    img_list_path = [os.path.join(filepath + "/images2", image) for image in img_list]

                    example = gr.Examples(
                        inputs=img2,
                        examples_per_page=6,
                        examples=img_list_path
                    )
                
                with gr.Column():
                    # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
                    image_out2 = gr.Image(label="Background removed image", elem_id="output-img" ,show_share_button=False, type = 'filepath')

            background_remove_button = gr.Button(value="Remove background")

        with gr.Column(visible = False) as image_upscaling_block:
            gr.Markdown("## Image upscaling")
            # gr.Markdown("### Using [Stable Diffusion x4 upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) or [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) model")
            gr.Markdown("### Using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) model")
            with gr.Row():
                with gr.Column():
                    img3 = gr.Image(sources='upload', type="pil", label='Image to upscale')
                    
                    img_list = os.listdir(filepath + "/images3")
                    img_list_path = [os.path.join(filepath + "/images3", image) for image in img_list]

                    example = gr.Examples(
                        inputs=img3,
                        examples_per_page=6,
                        examples=img_list_path
                    )
                    # prompt = gr.Textbox(label="Prompt")
                    # upscale_radio = gr.Radio(["Stable Diffusion x4 upscaler", "Real-ESRGAN"], value="Stable Diffusion x4 upscaler", label = "Choose a model")

                
                with gr.Column():
                    # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
                    image_out3 = gr.Image(label="Upscaled image", elem_id="output-img" ,show_share_button=False, type = 'filepath')

            upscale_button = gr.Button(value="Upscale")

        stylize_button.click(fn=start_stylize_simple, inputs=[img, style_img], outputs=[image_out], api_name='stylize')
        background_remove_button.click(fn=background_remove, inputs=[img2], outputs=[image_out2], api_name='background_removal')
        object_remove_button.click(fn=object_remove, inputs=[imgs4], outputs=[image_out4], api_name='object_removal')
        upscale_button.click(fn=upscale, inputs=[img3], outputs=[image_out3], api_name='upscale')
        radio.change(radio_click, radio, [art_style_transfer_block, object_erasing_block, in_painting_block, background_removal_block, image_upscaling_block])
    
    demo.launch(share=False, server_name="0.0.0.0", ssl_verify=False)
    # demo.launch(share=True)