Spaces:
Configuration error
Configuration error
File size: 32,584 Bytes
392065a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
import argparse
import os
import random
import cv2
import gradio as gr
import numpy as np
import torch
from controlnet_aux import HEDdetector, OpenposeDetector
from PIL import Image, ImageFilter
from safetensors.torch import load_model
from transformers import CLIPTextModel, DPTFeatureExtractor, DPTForDepthEstimation
from diffusers import UniPCMultistepScheduler
from diffusers.pipelines.controlnet.pipeline_controlnet import ControlNetModel
from PowerPaint.powerpaint.models.BrushNet_CA import BrushNetModel
from PowerPaint.powerpaint.models.unet_2d_condition import UNet2DConditionModel
from PowerPaint.powerpaint.pipelines.pipeline_PowerPaint import StableDiffusionInpaintPipeline as Pipeline
from PowerPaint.powerpaint.pipelines.pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline
from PowerPaint.powerpaint.pipelines.pipeline_PowerPaint_ControlNet import (
StableDiffusionControlNetInpaintPipeline as controlnetPipeline,
)
from PowerPaint.powerpaint.utils.utils import TokenizerWrapper, add_tokens
torch.set_grad_enabled(False)
weight_dtype = torch.float16
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def add_task(prompt, negative_prompt, control_type, version):
pos_prefix = neg_prefix = ""
if control_type == "object-removal" or control_type == "image-outpainting":
if version == "ppt-v1":
pos_prefix = "empty scene blur " + prompt
neg_prefix = negative_prompt
promptA = pos_prefix + " P_ctxt"
promptB = pos_prefix + " P_ctxt"
negative_promptA = neg_prefix + " P_obj"
negative_promptB = neg_prefix + " P_obj"
elif control_type == "shape-guided":
if version == "ppt-v1":
pos_prefix = prompt
neg_prefix = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry "
promptA = pos_prefix + " P_shape"
promptB = pos_prefix + " P_ctxt"
negative_promptA = neg_prefix + "P_shape"
negative_promptB = neg_prefix + "P_ctxt"
else:
if version == "ppt-v1":
pos_prefix = prompt
neg_prefix = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry "
promptA = pos_prefix + " P_obj"
promptB = pos_prefix + " P_obj"
negative_promptA = neg_prefix + "P_obj"
negative_promptB = neg_prefix + "P_obj"
return promptA, promptB, negative_promptA, negative_promptB
def select_tab_text_guided():
return "text-guided"
def select_tab_object_removal():
return "object-removal"
def select_tab_image_outpainting():
return "image-outpainting"
def select_tab_shape_guided():
return "shape-guided"
class PowerPaintController:
def __init__(self, weight_dtype, checkpoint_dir, local_files_only, version) -> None:
self.version = version
self.checkpoint_dir = checkpoint_dir
self.local_files_only = local_files_only
# initialize powerpaint pipeline
if version == "ppt-v1":
self.pipe = Pipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=weight_dtype, local_files_only=local_files_only
)
self.pipe.tokenizer = TokenizerWrapper(
from_pretrained="runwayml/stable-diffusion-v1-5",
subfolder="tokenizer",
revision=None,
local_files_only=local_files_only,
)
# add learned task tokens into the tokenizer
add_tokens(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder,
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
initialize_tokens=["a", "a", "a"],
num_vectors_per_token=10,
)
# loading pre-trained weights
load_model(self.pipe.unet, os.path.join(checkpoint_dir, "unet/unet.safetensors"))
load_model(self.pipe.text_encoder, os.path.join(checkpoint_dir, "text_encoder/text_encoder.safetensors"))
self.pipe = self.pipe.to("cuda")
# initialize controlnet-related models
self.depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
self.feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
self.openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
self.hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
base_control = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype, local_files_only=local_files_only
)
self.control_pipe = controlnetPipeline(
self.pipe.vae,
self.pipe.text_encoder,
self.pipe.tokenizer,
self.pipe.unet,
base_control,
self.pipe.scheduler,
None,
None,
False,
)
self.control_pipe = self.control_pipe.to("cuda")
self.current_control = "canny"
# controlnet_conditioning_scale = 0.8
else:
# brushnet-based version
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet",
revision=None,
torch_dtype=weight_dtype,
local_files_only=local_files_only,
)
text_encoder_brushnet = CLIPTextModel.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="text_encoder",
revision=None,
torch_dtype=weight_dtype,
local_files_only=local_files_only,
)
brushnet = BrushNetModel.from_unet(unet)
base_model_path = os.path.join(checkpoint_dir, "realisticVisionV60B1_v51VAE")
self.pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained(
base_model_path,
brushnet=brushnet,
text_encoder_brushnet=text_encoder_brushnet,
torch_dtype=weight_dtype,
low_cpu_mem_usage=False,
safety_checker=None,
)
self.pipe.unet = UNet2DConditionModel.from_pretrained(
base_model_path,
subfolder="unet",
revision=None,
torch_dtype=weight_dtype,
local_files_only=local_files_only,
)
self.pipe.tokenizer = TokenizerWrapper(
from_pretrained=base_model_path,
subfolder="tokenizer",
revision=None,
torch_type=weight_dtype,
local_files_only=local_files_only,
)
# add learned task tokens into the tokenizer
add_tokens(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder_brushnet,
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"],
initialize_tokens=["a", "a", "a"],
num_vectors_per_token=10,
)
load_model(
self.pipe.brushnet,
os.path.join(checkpoint_dir, "PowerPaint_Brushnet/diffusion_pytorch_model.safetensors"),
)
self.pipe.text_encoder_brushnet.load_state_dict(
torch.load(os.path.join(checkpoint_dir, "PowerPaint_Brushnet/pytorch_model.bin")), strict=False
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.enable_model_cpu_offload()
self.pipe = self.pipe.to("cuda")
def get_depth_map(self, image):
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = self.depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def load_controlnet(self, control_type):
if self.current_control != control_type:
if control_type == "canny" or control_type is None:
self.control_pipe.controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype, local_files_only=self.local_files_only
)
elif control_type == "pose":
self.control_pipe.controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose",
torch_dtype=weight_dtype,
local_files_only=self.local_files_only,
)
elif control_type == "depth":
self.control_pipe.controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-depth", torch_dtype=weight_dtype, local_files_only=self.local_files_only
)
else:
self.control_pipe.controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-hed", torch_dtype=weight_dtype, local_files_only=self.local_files_only
)
self.control_pipe = self.control_pipe.to("cuda")
self.current_control = control_type
def predict(
self,
input_image,
prompt,
fitting_degree,
ddim_steps,
scale,
seed,
negative_prompt,
task,
vertical_expansion_ratio,
horizontal_expansion_ratio,
):
input_image['image'] = input_image['background']
input_image['mask'] = input_image['layers'][-1]
size1, size2 = input_image["image"].convert("RGB").size
if task != "image-outpainting":
if size1 < size2:
input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
else:
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
else:
if size1 < size2:
input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512)))
else:
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512))
if vertical_expansion_ratio is not None and horizontal_expansion_ratio is not None:
o_W, o_H = input_image["image"].convert("RGB").size
c_W = int(horizontal_expansion_ratio * o_W)
c_H = int(vertical_expansion_ratio * o_H)
expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127
original_img = np.array(input_image["image"])
expand_img[
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
:,
] = original_img
blurry_gap = 10
expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255
if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1:
expand_mask[
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H,
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
:,
] = 0
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1:
expand_mask[
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap,
:,
] = 0
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1:
expand_mask[
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap,
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W,
:,
] = 0
input_image["image"] = Image.fromarray(expand_img)
input_image["mask"] = Image.fromarray(expand_mask)
if self.version != "ppt-v1":
if task == "image-outpainting":
prompt = prompt + " empty scene"
if task == "object-removal":
prompt = prompt + " empty scene blur"
promptA, promptB, negative_promptA, negative_promptB = add_task(prompt, negative_prompt, task, self.version)
print(promptA, promptB, negative_promptA, negative_promptB)
img = np.array(input_image["image"].convert("RGB"))
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
input_image["image"] = input_image["image"].resize((H, W))
input_image["mask"] = input_image["mask"].resize((H, W))
set_seed(seed)
if self.version == "ppt-v1":
# for sd-inpainting based method
result = self.pipe(
promptA=promptA,
promptB=promptB,
tradoff=fitting_degree,
tradoff_nag=fitting_degree,
negative_promptA=negative_promptA,
negative_promptB=negative_promptB,
image=input_image["image"].convert("RGB"),
mask=input_image["mask"].convert("RGB"),
width=H,
height=W,
guidance_scale=scale,
num_inference_steps=ddim_steps,
).images[0]
else:
# for brushnet-based method
np_inpimg = np.array(input_image["image"])
np_inmask = np.array(input_image["mask"]) / 255.0
np_inpimg = np_inpimg * (1 - np_inmask)
input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB")
result = self.pipe(
promptA=promptA,
promptB=promptB,
promptU=prompt,
tradoff=fitting_degree,
tradoff_nag=fitting_degree,
image=input_image["image"].convert("RGB"),
mask=input_image["mask"].convert("RGB"),
num_inference_steps=ddim_steps,
generator=torch.Generator("cuda").manual_seed(seed),
brushnet_conditioning_scale=1.0,
negative_promptA=negative_promptA,
negative_promptB=negative_promptB,
negative_promptU=negative_prompt,
guidance_scale=scale,
width=H,
height=W,
).images[0]
mask_np = np.array(input_image["mask"].convert("RGB"))
red = np.array(result).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(result)
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0)
+ mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3))
m_img = np.asarray(m_img) / 255.0
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
ours_np = np.asarray(result) / 255.0
ours_np = ours_np * m_img + (1 - m_img) * img_np
dict_res = [input_image["mask"].convert("RGB"), result_m]
# result_paste = Image.fromarray(np.uint8(ours_np * 255))
# dict_out = [input_image["image"].convert("RGB"), result_paste]
dict_out = [result]
return dict_out, dict_res
def predict_controlnet(
self,
input_image,
input_control_image,
control_type,
prompt,
ddim_steps,
scale,
seed,
negative_prompt,
controlnet_conditioning_scale,
):
promptA = prompt + " P_obj"
promptB = prompt + " P_obj"
negative_promptA = negative_prompt
negative_promptB = negative_prompt
input_image['image'] = input_image['background']
input_image['mask'] = input_image['layers'][-1]
size1, size2 = input_image["image"].convert("RGB").size
if size1 < size2:
input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640)))
else:
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640))
img = np.array(input_image["image"].convert("RGB"))
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
input_image["image"] = input_image["image"].resize((H, W))
input_image["mask"] = input_image["mask"].resize((H, W))
if control_type != self.current_control:
self.load_controlnet(control_type)
controlnet_image = input_control_image
if control_type == "canny":
controlnet_image = controlnet_image.resize((H, W))
controlnet_image = np.array(controlnet_image)
controlnet_image = cv2.Canny(controlnet_image, 100, 200)
controlnet_image = controlnet_image[:, :, None]
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
controlnet_image = Image.fromarray(controlnet_image)
elif control_type == "pose":
controlnet_image = self.openpose(controlnet_image)
elif control_type == "depth":
controlnet_image = controlnet_image.resize((H, W))
controlnet_image = self.get_depth_map(controlnet_image)
else:
controlnet_image = self.hed(controlnet_image)
mask_np = np.array(input_image["mask"].convert("RGB"))
controlnet_image = controlnet_image.resize((H, W))
set_seed(seed)
result = self.control_pipe(
promptA=promptB,
promptB=promptA,
tradoff=1.0,
tradoff_nag=1.0,
negative_promptA=negative_promptA,
negative_promptB=negative_promptB,
image=input_image["image"].convert("RGB"),
mask=input_image["mask"].convert("RGB"),
control_image=controlnet_image,
width=H,
height=W,
guidance_scale=scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=ddim_steps,
).images[0]
red = np.array(result).astype("float") * 1
red[:, :, 0] = 180.0
red[:, :, 2] = 0
red[:, :, 1] = 0
result_m = np.array(result)
result_m = Image.fromarray(
(
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0)
+ mask_np.astype("float") / 512.0 * red
).astype("uint8")
)
mask_np = np.array(input_image["mask"].convert("RGB"))
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=4))
m_img = np.asarray(m_img) / 255.0
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0
ours_np = np.asarray(result) / 255.0
ours_np = ours_np * m_img + (1 - m_img) * img_np
result_paste = Image.fromarray(np.uint8(ours_np * 255))
return [input_image["image"].convert("RGB"), result_paste], [controlnet_image, result_m]
def infer(
self,
input_image,
text_guided_prompt,
text_guided_negative_prompt,
shape_guided_prompt,
shape_guided_negative_prompt,
fitting_degree,
ddim_steps,
scale,
seed,
task,
vertical_expansion_ratio,
horizontal_expansion_ratio,
outpaint_prompt,
outpaint_negative_prompt,
removal_prompt,
removal_negative_prompt,
enable_control=False,
input_control_image=None,
control_type="canny",
controlnet_conditioning_scale=None,
):
if task == "text-guided":
prompt = text_guided_prompt
negative_prompt = text_guided_negative_prompt
elif task == "shape-guided":
prompt = shape_guided_prompt
negative_prompt = shape_guided_negative_prompt
elif task == "object-removal":
prompt = removal_prompt
negative_prompt = removal_negative_prompt
elif task == "image-outpainting":
prompt = outpaint_prompt
negative_prompt = outpaint_negative_prompt
return self.predict(
input_image,
prompt,
fitting_degree,
ddim_steps,
scale,
seed,
negative_prompt,
task,
vertical_expansion_ratio,
horizontal_expansion_ratio,
)
else:
task = "text-guided"
prompt = text_guided_prompt
negative_prompt = text_guided_negative_prompt
# currently, we only support controlnet in PowerPaint-v1
if self.version == "ppt-v1" and enable_control and task == "text-guided":
return self.predict_controlnet(
input_image,
input_control_image,
control_type,
prompt,
ddim_steps,
scale,
seed,
negative_prompt,
controlnet_conditioning_scale,
)
else:
return self.predict(
input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None
)
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument("--weight_dtype", type=str, default="float16")
args.add_argument("--checkpoint_dir", type=str, default="./checkpoints/ppt-v1")
args.add_argument("--version", type=str, default="ppt-v1")
args.add_argument("--share", action="store_true")
args.add_argument(
"--local_files_only", action="store_true", help="enable it to use cached files without requesting from the hub"
)
args.add_argument("--port", type=int, default=7860)
args = args.parse_args()
# initialize the pipeline controller
weight_dtype = torch.float16 if args.weight_dtype == "float16" else torch.float32
controller = PowerPaintController(weight_dtype, args.checkpoint_dir, args.local_files_only, args.version)
# ui
with gr.Blocks(css="style.css") as demo:
with gr.Row():
gr.Markdown(
"<div align='center'><font size='18'>PowerPaint: High-Quality Versatile Image Inpainting</font></div>" # noqa
)
with gr.Row():
gr.Markdown(
"<div align='center'><font size='5'><a href='https://powerpaint.github.io/'>Project Page</a>  " # noqa
"<a href='https://arxiv.org/abs/2312.03594/'>Paper</a>  "
"<a href='https://github.com/open-mmlab/powerpaint'>Code</a> </font></div>" # noqa
)
with gr.Row():
gr.Markdown(
"**Note:** Due to network-related factors, the page may experience occasional bugs! If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content." # noqa
)
# Attention: Due to network-related factors, the page may experience occasional bugs. If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content.
with gr.Row():
with gr.Column():
gr.Markdown("### Input image and draw mask")
input_image = gr.Image(source="upload", tool="sketch", type="pil")
task = gr.Radio(
["text-guided", "object-removal", "shape-guided", "image-outpainting"],
show_label=False,
visible=False,
)
# Text-guided object inpainting
with gr.Tab("Text-guided object inpainting") as tab_text_guided:
enable_text_guided = gr.Checkbox(
label="Enable text-guided object inpainting", value=True, interactive=False
)
text_guided_prompt = gr.Textbox(label="Prompt")
text_guided_negative_prompt = gr.Textbox(label="negative_prompt")
tab_text_guided.select(fn=select_tab_text_guided, inputs=None, outputs=task)
# currently, we only support controlnet in PowerPaint-v1
if args.version == "ppt-v1":
gr.Markdown("### Controlnet setting")
enable_control = gr.Checkbox(
label="Enable controlnet", info="Enable this if you want to use controlnet"
)
controlnet_conditioning_scale = gr.Slider(
label="controlnet conditioning scale",
minimum=0,
maximum=1,
step=0.05,
value=0.5,
)
control_type = gr.Radio(["canny", "pose", "depth", "hed"], label="Control type")
input_control_image = gr.Image(source="upload", type="pil")
# Object removal inpainting
with gr.Tab("Object removal inpainting") as tab_object_removal:
enable_object_removal = gr.Checkbox(
label="Enable object removal inpainting",
value=True,
info="The recommended configuration for the Guidance Scale is 10 or higher. \
If undesired objects appear in the masked area, \
you can address this by specifically increasing the Guidance Scale.",
interactive=False,
)
removal_prompt = gr.Textbox(label="Prompt")
removal_negative_prompt = gr.Textbox(label="negative_prompt")
tab_object_removal.select(fn=select_tab_object_removal, inputs=None, outputs=task)
# Object image outpainting
with gr.Tab("Image outpainting") as tab_image_outpainting:
enable_object_removal = gr.Checkbox(
label="Enable image outpainting",
value=True,
info="The recommended configuration for the Guidance Scale is 10 or higher. \
If unwanted random objects appear in the extended image region, \
you can enhance the cleanliness of the extension area by increasing the Guidance Scale.",
interactive=False,
)
outpaint_prompt = gr.Textbox(label="Outpainting_prompt")
outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt")
horizontal_expansion_ratio = gr.Slider(
label="horizontal expansion ratio",
minimum=1,
maximum=4,
step=0.05,
value=1,
)
vertical_expansion_ratio = gr.Slider(
label="vertical expansion ratio",
minimum=1,
maximum=4,
step=0.05,
value=1,
)
tab_image_outpainting.select(fn=select_tab_image_outpainting, inputs=None, outputs=task)
# Shape-guided object inpainting
with gr.Tab("Shape-guided object inpainting") as tab_shape_guided:
enable_shape_guided = gr.Checkbox(
label="Enable shape-guided object inpainting", value=True, interactive=False
)
shape_guided_prompt = gr.Textbox(label="shape_guided_prompt")
shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt")
fitting_degree = gr.Slider(
label="fitting degree",
minimum=0,
maximum=1,
step=0.05,
value=1,
)
tab_shape_guided.select(fn=select_tab_shape_guided, inputs=None, outputs=task)
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
scale = gr.Slider(
label="Guidance Scale",
info="For object removal and image outpainting, it is recommended to set the value at 10 or above.",
minimum=0.1,
maximum=30.0,
value=7.5,
step=0.1,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
with gr.Column():
gr.Markdown("### Inpainting result")
inpaint_result = gr.Gallery(label="Generated images", show_label=False, columns=2)
gr.Markdown("### Mask")
gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2)
if args.version == "ppt-v1":
run_button.click(
fn=controller.infer,
inputs=[
input_image,
text_guided_prompt,
text_guided_negative_prompt,
shape_guided_prompt,
shape_guided_negative_prompt,
fitting_degree,
ddim_steps,
scale,
seed,
task,
vertical_expansion_ratio,
horizontal_expansion_ratio,
outpaint_prompt,
outpaint_negative_prompt,
removal_prompt,
removal_negative_prompt,
enable_control,
input_control_image,
control_type,
controlnet_conditioning_scale,
],
outputs=[inpaint_result, gallery],
)
else:
run_button.click(
fn=controller.infer,
inputs=[
input_image,
text_guided_prompt,
text_guided_negative_prompt,
shape_guided_prompt,
shape_guided_negative_prompt,
fitting_degree,
ddim_steps,
scale,
seed,
task,
vertical_expansion_ratio,
horizontal_expansion_ratio,
outpaint_prompt,
outpaint_negative_prompt,
removal_prompt,
removal_negative_prompt,
],
outputs=[inpaint_result, gallery],
)
demo.queue()
demo.launch(share=args.share, server_name="0.0.0.0", server_port=args.port)
|