diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..93fd49b75b0a5e0ec2c97e9bb0eace9055a90888 --- /dev/null +++ b/Dockerfile @@ -0,0 +1,58 @@ +FROM tensorflow/tensorflow:latest-gpu + +WORKDIR /home/gradio_demos + +# resolve error related to opencv (ImportError: libGL.so.1: cannot open shared object file: No such file or directory) +RUN apt update +RUN apt -y upgrade +RUN apt install -y libgl1-mesa-glx + +# install pip +# RUN apt install python3-pip + +# install tensorflow +RUN pip3 install tensorflow + +# install gradio module +RUN pip3 install gradio + +# install module related to neural style transfer function +RUN pip3 install tensorflow_hub + +# install module related to background removal function +RUN pip3 install rembg + +# install module related to object removal function +RUN pip3 install simple_lama_inpainting + +# install module related to in-painting function +COPY PowerPaint ./PowerPaint +RUN pip3 install -r PowerPaint/requirements/requirements.txt +RUN apt install -y git-lfs +RUN git lfs install +RUN git lfs clone https://huggingface.co/JunhaoZhuang/PowerPaint-v1/ ./checkpoints/ppt-v1 + +# install module related to upscaling function +RUN git clone https://github.com/xinntao/Real-ESRGAN.git +RUN pip3 install basicsr +RUN sed -i 's/torchvision.transforms.functional_tensor/torchvision.transforms.functional/g' /usr/local/lib/python3.11/dist-packages/basicsr/data/degradations.py +RUN pip3 install facexlib +RUN pip3 install gfpgan +RUN pip3 install -r Real-ESRGAN/requirements.txt +WORKDIR /home/gradio_demos/Real-ESRGAN +RUN python3 setup.py develop +WORKDIR /home/gradio_demos + +# upgrade gradio to support newest components +RUN pip3 install --upgrade gradio + +# copy dependency files and scripts +COPY images ./images +COPY images2 ./images2 +COPY images3 ./images3 +COPY images4 ./images4 +COPY style_images ./style_images +COPY gradio_dynamic.py . + +# run main script +CMD ["python3", "gradio_dynamic.py"] diff --git a/PowerPaint/LICENSE b/PowerPaint/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..ecc0896bf1784f869b355fae4b9eab26550a4fef --- /dev/null +++ b/PowerPaint/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2024 OpenMMLab + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/PowerPaint/README.md b/PowerPaint/README.md new file mode 100644 index 0000000000000000000000000000000000000000..57626dc78d6593046ea0efe25d41023aa7901c6d --- /dev/null +++ b/PowerPaint/README.md @@ -0,0 +1,189 @@ +# šŸ–Œļø ECCV 2024 | PowerPaint: A Versatile Image Inpainting Model + +[**A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting**](https://arxiv.org/abs/2312.03594) + +[Junhao Zhuang](https://github.com/zhuang2002), [Yanhong Zeng](https://zengyh1900.github.io/), [Wenran Liu](https://github.com/liuwenran), [Chun Yuan†](https://www.sigs.tsinghua.edu.cn/yc2_en/main.htm), [Kai Chen†](https://chenkai.site/) + +(†corresponding author) + +[![arXiv](https://img.shields.io/badge/arXiv-2312.03594-b31b1b.svg)](https://arxiv.org/abs/2312.03594) +[![Project Page](https://img.shields.io/badge/PowerPaint-Website-green)](https://powerpaint.github.io/) +[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint) +[![HuggingFace Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/JunhaoZhuang/PowerPaint-v1) + +**Your star means a lot for us to develop this project!** :star: + +PowerPaint is a high-quality versatile image inpainting model that supports text-guided object inpainting, object removal, shape-guided object insertion, and outpainting at the same time. We achieve this by learning with tailored task prompts for different inpainting tasks. + + + + +## šŸš€ News + +**May 22, 2024**:fire: + +- We have open-sourced the model weights for PowerPaint v2-1, rectifying some existing issues that were present during the training process of version 2. [![HuggingFace Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/JunhaoZhuang/PowerPaint-v2-1) + +**April 7, 2024**:fire: + +- We open source the model weights and code for PowerPaint v2. [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/zhuangjunhao/PowerPaint_v2) [![HuggingFace Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/JunhaoZhuang/PowerPaint_v2) + +**April 6, 2024**: + +- We have retrained a new PowerPaint, taking inspiration from Brushnet. The [Online Demo](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint) has been updated accordingly. **We plan to release the model weights and code as open source in the next few days**. +- Tips: We preserve the cross-attention layer that was deleted by BrushNet for the task prompts input. + +| | Object insertion | Object Removal|Shape-guided Object Insertion|Outpainting| +|-----------------|-----------------|-----------------|-----------------|-----------------| +| Original Image| ![cropinput](https://github.com/Sanster/IOPaint/assets/108931120/bf91a1e8-8eaf-4be6-b47d-b8e43c9d182a)|![cropinput](https://github.com/Sanster/IOPaint/assets/108931120/c7e56119-aa57-4761-b6aa-56f8a0b72456)|![image](https://github.com/Sanster/IOPaint/assets/108931120/cbbfe84e-2bf1-425b-8349-f7874f2e978c)|![cropinput](https://github.com/Sanster/IOPaint/assets/108931120/134bb707-0fe5-4d22-a0ca-d440fa521365)| +| Output| ![image](https://github.com/Sanster/IOPaint/assets/108931120/ee777506-d336-4275-94f6-31abf9521866)| ![image](https://github.com/Sanster/IOPaint/assets/108931120/e9d8cf6c-13b8-443c-b327-6f27da54cda6)|![image](https://github.com/Sanster/IOPaint/assets/108931120/cc3008c9-37dd-4d98-ad43-58f67be872dc)|![image](https://github.com/Sanster/IOPaint/assets/108931120/18d8ca23-e6d7-4680-977f-e66341312476)| + +**December 22, 2023**:wrench: + +- The logical error in loading ControlNet has been rectified. The `gradio_PowerPaint.py` file and [Online Demo](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint) have also been updated. + +**December 18, 2023** + +*Enhanced PowerPaint Model* + +- We are delighted to announce the release of more stable model weights. These refined weights can now be accessed on [Hugging Face](https://huggingface.co/JunhaoZhuang/PowerPaint-v1/tree/main). The `gradio_PowerPaint.py` file and [Online Demo](https://openxlab.org.cn/apps/detail/rangoliu/PowerPaint) have also been updated as part of this release. + +## Get Started + +```bash +# Clone the Repository +git clone git@github.com:open-mmlab/PowerPaint.git + +# Create Virtual Environment with Conda +conda create --name ppt python=3.9 +conda activate ppt + +# Install Dependencies +pip install -r requirements/requirements.txt +``` + +Or you can construct a conda environment from scratch by running the following command: + +```bash +conda env create -f requirements/ppt.yaml +conda activate ppt +``` + +## Inference + +You can launch the Gradio interface for PowerPaint by running the following command: + +```bash +# Set up Git LFS +conda install git-lfs +git lfs install + +# Clone PowerPaint Model +git lfs clone https://huggingface.co/JunhaoZhuang/PowerPaint-v1/ ./checkpoints/ppt-v1 + +python app.py --share +``` + +For the BrushNet-based PowerPaint, you can run the following command: +```bash +# Clone PowerPaint Model +git lfs clone https://huggingface.co/JunhaoZhuang/PowerPaint_v2/ ./checkpoints/ppt-v2 + +python app.py --share --version ppt-v2 --checkpoint_dir checkpoints/ppt-v2 +``` + +### Text-Guided Object Inpainting + +After launching the Gradio interface, you can insert objects into images by uploading your image, drawing the mask, selecting the tab of `Text-guided object inpainting` and inputting the text prompt. The model will then generate the output image. + +|Input|Output| +|---------------|-----------------| +| | + + + +### Text-Guided Object Inpainting with ControlNet + +Fortunately, PowerPaint is compatible with ControlNet. Therefore, users can generate object with a control image. + +|Input| Condition | Control Image |Output| +|-------|--------|-------|----------| +| | Canny| | +| | Depth| | +| | HED| | +| | Pose| | + + +### Object Removal + +For object removal, you need to select the tab of `Object removal inpainting` and you don't need to input any prompts. PowerPaint is able to fill in the masked region according to context background. + +We remain the text box for inputing prompt, allowing users to further suppress object generation by using negative prompts. +Specifically, we recommend to use 10 or higher value for Guidance Scale. If undesired objects appear in the masked area, you can address this by specifically increasing the Guidance Scale. + +|Input|Output| +|---------------|-----------------| +| | + + + +### Image Outpainting + +For image outpainting, you don't need to input any text prompt. You can simply select the tab of `Image outpainting` and adjust the slider for `horizontal expansion ratio` and `vertical expansion ratio`, then PowerPaint will extend the image for you. + +|Input|Output| +|---------------|-----------------| +| | + + + +### Shape-Guided Object Inpainting + +PowerPaint also supports shape-guided object inpainting, which allows users to control the fitting degree of the generated objects to the shape of masks. You can select the tab of `Shape-guided object inpainting` and input the text prompt. Then, you can adjust the slider of `fitting degree` to control the shape of generated object. + +Taking the following cases as example, you can draw a square mask and use a high fitting degree, e.g., 0.95, to generate a bread to fit in the mask shape. For the same mask, you can also use a low fitting degree, e.g., 0.55, to generate a reasonable result for rabbit. However, if you use a high fitting degree for the 'square rabit', the result may look funny. + +Basically, we recommend to use 0.5-0.6 for fitting degree when you want to generate objects that are not constrained by the mask shape. If you want to generate objects that fit the mask shape, you can use 0.8-0.95 for fitting degree. + + +|Prompt | Fitting Degree | Input| Output| +|-------|--------|--------|---------| +|a bread | 0.95| | +|a rabbit | 0.55| | +|a rabbit | 0.95| | +|a rabbit | 0.95 | | + + + + + + + + +## Training + +Stay tuned! + + + +## Contact Us + +**Junhao Zhuang**: zhuangjh23@mails.tsinghua.edu.cn + +**Yanhong Zeng**: zengyh1900@gmail.com + + + + +## BibTeX + +``` +@misc{zhuang2023task, + title={A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting}, + author={Junhao Zhuang and Yanhong Zeng and Wenran Liu and Chun Yuan and Kai Chen}, + year={2023}, + eprint={2312.03594}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` diff --git a/PowerPaint/__pycache__/app.cpython-311.pyc b/PowerPaint/__pycache__/app.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a0761b3b890e085ff988814d35444b8876ad142 Binary files /dev/null and b/PowerPaint/__pycache__/app.cpython-311.pyc differ diff --git a/PowerPaint/__pycache__/app.cpython-38.pyc b/PowerPaint/__pycache__/app.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d362f6cbd091f9ded96f10867687501cb662746 Binary files /dev/null and b/PowerPaint/__pycache__/app.cpython-38.pyc differ diff --git a/PowerPaint/app.py b/PowerPaint/app.py new file mode 100644 index 0000000000000000000000000000000000000000..bd49c77367f85377aedf7c4bc285bdcd9044686b --- /dev/null +++ b/PowerPaint/app.py @@ -0,0 +1,753 @@ +import argparse +import os +import random + +import cv2 +import gradio as gr +import numpy as np +import torch +from controlnet_aux import HEDdetector, OpenposeDetector +from PIL import Image, ImageFilter +from safetensors.torch import load_model +from transformers import CLIPTextModel, DPTFeatureExtractor, DPTForDepthEstimation + +from diffusers import UniPCMultistepScheduler +from diffusers.pipelines.controlnet.pipeline_controlnet import ControlNetModel +from PowerPaint.powerpaint.models.BrushNet_CA import BrushNetModel +from PowerPaint.powerpaint.models.unet_2d_condition import UNet2DConditionModel +from PowerPaint.powerpaint.pipelines.pipeline_PowerPaint import StableDiffusionInpaintPipeline as Pipeline +from PowerPaint.powerpaint.pipelines.pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline +from PowerPaint.powerpaint.pipelines.pipeline_PowerPaint_ControlNet import ( + StableDiffusionControlNetInpaintPipeline as controlnetPipeline, +) +from PowerPaint.powerpaint.utils.utils import TokenizerWrapper, add_tokens + + +torch.set_grad_enabled(False) +weight_dtype = torch.float16 + +def set_seed(seed): + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + np.random.seed(seed) + random.seed(seed) + + +def add_task(prompt, negative_prompt, control_type, version): + pos_prefix = neg_prefix = "" + if control_type == "object-removal" or control_type == "image-outpainting": + if version == "ppt-v1": + pos_prefix = "empty scene blur " + prompt + neg_prefix = negative_prompt + promptA = pos_prefix + " P_ctxt" + promptB = pos_prefix + " P_ctxt" + negative_promptA = neg_prefix + " P_obj" + negative_promptB = neg_prefix + " P_obj" + elif control_type == "shape-guided": + if version == "ppt-v1": + pos_prefix = prompt + neg_prefix = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry " + promptA = pos_prefix + " P_shape" + promptB = pos_prefix + " P_ctxt" + negative_promptA = neg_prefix + "P_shape" + negative_promptB = neg_prefix + "P_ctxt" + else: + if version == "ppt-v1": + pos_prefix = prompt + neg_prefix = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry " + promptA = pos_prefix + " P_obj" + promptB = pos_prefix + " P_obj" + negative_promptA = neg_prefix + "P_obj" + negative_promptB = neg_prefix + "P_obj" + + return promptA, promptB, negative_promptA, negative_promptB + + +def select_tab_text_guided(): + return "text-guided" + + +def select_tab_object_removal(): + return "object-removal" + + +def select_tab_image_outpainting(): + return "image-outpainting" + + +def select_tab_shape_guided(): + return "shape-guided" + + +class PowerPaintController: + def __init__(self, weight_dtype, checkpoint_dir, local_files_only, version) -> None: + self.version = version + self.checkpoint_dir = checkpoint_dir + self.local_files_only = local_files_only + + # initialize powerpaint pipeline + if version == "ppt-v1": + self.pipe = Pipeline.from_pretrained( + "runwayml/stable-diffusion-inpainting", torch_dtype=weight_dtype, local_files_only=local_files_only + ) + self.pipe.tokenizer = TokenizerWrapper( + from_pretrained="runwayml/stable-diffusion-v1-5", + subfolder="tokenizer", + revision=None, + local_files_only=local_files_only, + ) + + # add learned task tokens into the tokenizer + add_tokens( + tokenizer=self.pipe.tokenizer, + text_encoder=self.pipe.text_encoder, + placeholder_tokens=["P_ctxt", "P_shape", "P_obj"], + initialize_tokens=["a", "a", "a"], + num_vectors_per_token=10, + ) + + # loading pre-trained weights + load_model(self.pipe.unet, os.path.join(checkpoint_dir, "unet/unet.safetensors")) + load_model(self.pipe.text_encoder, os.path.join(checkpoint_dir, "text_encoder/text_encoder.safetensors")) + self.pipe = self.pipe.to("cuda") + + # initialize controlnet-related models + self.depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") + self.feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") + self.openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") + self.hed = HEDdetector.from_pretrained("lllyasviel/ControlNet") + + base_control = ControlNetModel.from_pretrained( + "lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype, local_files_only=local_files_only + ) + self.control_pipe = controlnetPipeline( + self.pipe.vae, + self.pipe.text_encoder, + self.pipe.tokenizer, + self.pipe.unet, + base_control, + self.pipe.scheduler, + None, + None, + False, + ) + self.control_pipe = self.control_pipe.to("cuda") + + self.current_control = "canny" + # controlnet_conditioning_scale = 0.8 + else: + # brushnet-based version + unet = UNet2DConditionModel.from_pretrained( + "runwayml/stable-diffusion-v1-5", + subfolder="unet", + revision=None, + torch_dtype=weight_dtype, + local_files_only=local_files_only, + ) + text_encoder_brushnet = CLIPTextModel.from_pretrained( + "runwayml/stable-diffusion-v1-5", + subfolder="text_encoder", + revision=None, + torch_dtype=weight_dtype, + local_files_only=local_files_only, + ) + brushnet = BrushNetModel.from_unet(unet) + base_model_path = os.path.join(checkpoint_dir, "realisticVisionV60B1_v51VAE") + self.pipe = StableDiffusionPowerPaintBrushNetPipeline.from_pretrained( + base_model_path, + brushnet=brushnet, + text_encoder_brushnet=text_encoder_brushnet, + torch_dtype=weight_dtype, + low_cpu_mem_usage=False, + safety_checker=None, + ) + self.pipe.unet = UNet2DConditionModel.from_pretrained( + base_model_path, + subfolder="unet", + revision=None, + torch_dtype=weight_dtype, + local_files_only=local_files_only, + ) + self.pipe.tokenizer = TokenizerWrapper( + from_pretrained=base_model_path, + subfolder="tokenizer", + revision=None, + torch_type=weight_dtype, + local_files_only=local_files_only, + ) + + # add learned task tokens into the tokenizer + add_tokens( + tokenizer=self.pipe.tokenizer, + text_encoder=self.pipe.text_encoder_brushnet, + placeholder_tokens=["P_ctxt", "P_shape", "P_obj"], + initialize_tokens=["a", "a", "a"], + num_vectors_per_token=10, + ) + load_model( + self.pipe.brushnet, + os.path.join(checkpoint_dir, "PowerPaint_Brushnet/diffusion_pytorch_model.safetensors"), + ) + + self.pipe.text_encoder_brushnet.load_state_dict( + torch.load(os.path.join(checkpoint_dir, "PowerPaint_Brushnet/pytorch_model.bin")), strict=False + ) + + self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) + + self.pipe.enable_model_cpu_offload() + self.pipe = self.pipe.to("cuda") + + def get_depth_map(self, image): + image = self.feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") + with torch.no_grad(), torch.autocast("cuda"): + depth_map = self.depth_estimator(image).predicted_depth + + depth_map = torch.nn.functional.interpolate( + depth_map.unsqueeze(1), + size=(1024, 1024), + mode="bicubic", + align_corners=False, + ) + depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) + depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) + depth_map = (depth_map - depth_min) / (depth_max - depth_min) + image = torch.cat([depth_map] * 3, dim=1) + + image = image.permute(0, 2, 3, 1).cpu().numpy()[0] + image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) + return image + + def load_controlnet(self, control_type): + if self.current_control != control_type: + if control_type == "canny" or control_type is None: + self.control_pipe.controlnet = ControlNetModel.from_pretrained( + "lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype, local_files_only=self.local_files_only + ) + elif control_type == "pose": + self.control_pipe.controlnet = ControlNetModel.from_pretrained( + "lllyasviel/sd-controlnet-openpose", + torch_dtype=weight_dtype, + local_files_only=self.local_files_only, + ) + elif control_type == "depth": + self.control_pipe.controlnet = ControlNetModel.from_pretrained( + "lllyasviel/sd-controlnet-depth", torch_dtype=weight_dtype, local_files_only=self.local_files_only + ) + else: + self.control_pipe.controlnet = ControlNetModel.from_pretrained( + "lllyasviel/sd-controlnet-hed", torch_dtype=weight_dtype, local_files_only=self.local_files_only + ) + self.control_pipe = self.control_pipe.to("cuda") + self.current_control = control_type + + def predict( + self, + input_image, + prompt, + fitting_degree, + ddim_steps, + scale, + seed, + negative_prompt, + task, + vertical_expansion_ratio, + horizontal_expansion_ratio, + ): + input_image['image'] = input_image['background'] + input_image['mask'] = input_image['layers'][-1] + size1, size2 = input_image["image"].convert("RGB").size + + if task != "image-outpainting": + if size1 < size2: + input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640))) + else: + input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640)) + else: + if size1 < size2: + input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512))) + else: + input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512)) + + if vertical_expansion_ratio is not None and horizontal_expansion_ratio is not None: + o_W, o_H = input_image["image"].convert("RGB").size + c_W = int(horizontal_expansion_ratio * o_W) + c_H = int(vertical_expansion_ratio * o_H) + + expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127 + original_img = np.array(input_image["image"]) + expand_img[ + int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H, + int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W, + :, + ] = original_img + + blurry_gap = 10 + + expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255 + if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1: + expand_mask[ + int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H, + int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap, + :, + ] = 0 + elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1: + expand_mask[ + int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap, + int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap, + :, + ] = 0 + elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1: + expand_mask[ + int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap, + int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W, + :, + ] = 0 + + input_image["image"] = Image.fromarray(expand_img) + input_image["mask"] = Image.fromarray(expand_mask) + + if self.version != "ppt-v1": + if task == "image-outpainting": + prompt = prompt + " empty scene" + if task == "object-removal": + prompt = prompt + " empty scene blur" + promptA, promptB, negative_promptA, negative_promptB = add_task(prompt, negative_prompt, task, self.version) + print(promptA, promptB, negative_promptA, negative_promptB) + + img = np.array(input_image["image"].convert("RGB")) + W = int(np.shape(img)[0] - np.shape(img)[0] % 8) + H = int(np.shape(img)[1] - np.shape(img)[1] % 8) + input_image["image"] = input_image["image"].resize((H, W)) + input_image["mask"] = input_image["mask"].resize((H, W)) + set_seed(seed) + + if self.version == "ppt-v1": + # for sd-inpainting based method + result = self.pipe( + promptA=promptA, + promptB=promptB, + tradoff=fitting_degree, + tradoff_nag=fitting_degree, + negative_promptA=negative_promptA, + negative_promptB=negative_promptB, + image=input_image["image"].convert("RGB"), + mask=input_image["mask"].convert("RGB"), + width=H, + height=W, + guidance_scale=scale, + num_inference_steps=ddim_steps, + ).images[0] + else: + # for brushnet-based method + np_inpimg = np.array(input_image["image"]) + np_inmask = np.array(input_image["mask"]) / 255.0 + np_inpimg = np_inpimg * (1 - np_inmask) + input_image["image"] = Image.fromarray(np_inpimg.astype(np.uint8)).convert("RGB") + result = self.pipe( + promptA=promptA, + promptB=promptB, + promptU=prompt, + tradoff=fitting_degree, + tradoff_nag=fitting_degree, + image=input_image["image"].convert("RGB"), + mask=input_image["mask"].convert("RGB"), + num_inference_steps=ddim_steps, + generator=torch.Generator("cuda").manual_seed(seed), + brushnet_conditioning_scale=1.0, + negative_promptA=negative_promptA, + negative_promptB=negative_promptB, + negative_promptU=negative_prompt, + guidance_scale=scale, + width=H, + height=W, + ).images[0] + + mask_np = np.array(input_image["mask"].convert("RGB")) + red = np.array(result).astype("float") * 1 + red[:, :, 0] = 180.0 + red[:, :, 2] = 0 + red[:, :, 1] = 0 + result_m = np.array(result) + result_m = Image.fromarray( + ( + result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + + mask_np.astype("float") / 512.0 * red + ).astype("uint8") + ) + m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3)) + m_img = np.asarray(m_img) / 255.0 + img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0 + ours_np = np.asarray(result) / 255.0 + ours_np = ours_np * m_img + (1 - m_img) * img_np + dict_res = [input_image["mask"].convert("RGB"), result_m] + + # result_paste = Image.fromarray(np.uint8(ours_np * 255)) + # dict_out = [input_image["image"].convert("RGB"), result_paste] + dict_out = [result] + return dict_out, dict_res + + def predict_controlnet( + self, + input_image, + input_control_image, + control_type, + prompt, + ddim_steps, + scale, + seed, + negative_prompt, + controlnet_conditioning_scale, + ): + promptA = prompt + " P_obj" + promptB = prompt + " P_obj" + negative_promptA = negative_prompt + negative_promptB = negative_prompt + input_image['image'] = input_image['background'] + input_image['mask'] = input_image['layers'][-1] + size1, size2 = input_image["image"].convert("RGB").size + + if size1 < size2: + input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640))) + else: + input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640)) + img = np.array(input_image["image"].convert("RGB")) + W = int(np.shape(img)[0] - np.shape(img)[0] % 8) + H = int(np.shape(img)[1] - np.shape(img)[1] % 8) + input_image["image"] = input_image["image"].resize((H, W)) + input_image["mask"] = input_image["mask"].resize((H, W)) + + if control_type != self.current_control: + self.load_controlnet(control_type) + controlnet_image = input_control_image + if control_type == "canny": + controlnet_image = controlnet_image.resize((H, W)) + controlnet_image = np.array(controlnet_image) + controlnet_image = cv2.Canny(controlnet_image, 100, 200) + controlnet_image = controlnet_image[:, :, None] + controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2) + controlnet_image = Image.fromarray(controlnet_image) + elif control_type == "pose": + controlnet_image = self.openpose(controlnet_image) + elif control_type == "depth": + controlnet_image = controlnet_image.resize((H, W)) + controlnet_image = self.get_depth_map(controlnet_image) + else: + controlnet_image = self.hed(controlnet_image) + + mask_np = np.array(input_image["mask"].convert("RGB")) + controlnet_image = controlnet_image.resize((H, W)) + set_seed(seed) + result = self.control_pipe( + promptA=promptB, + promptB=promptA, + tradoff=1.0, + tradoff_nag=1.0, + negative_promptA=negative_promptA, + negative_promptB=negative_promptB, + image=input_image["image"].convert("RGB"), + mask=input_image["mask"].convert("RGB"), + control_image=controlnet_image, + width=H, + height=W, + guidance_scale=scale, + controlnet_conditioning_scale=controlnet_conditioning_scale, + num_inference_steps=ddim_steps, + ).images[0] + red = np.array(result).astype("float") * 1 + red[:, :, 0] = 180.0 + red[:, :, 2] = 0 + red[:, :, 1] = 0 + result_m = np.array(result) + result_m = Image.fromarray( + ( + result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + + mask_np.astype("float") / 512.0 * red + ).astype("uint8") + ) + + mask_np = np.array(input_image["mask"].convert("RGB")) + m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=4)) + m_img = np.asarray(m_img) / 255.0 + img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0 + ours_np = np.asarray(result) / 255.0 + ours_np = ours_np * m_img + (1 - m_img) * img_np + result_paste = Image.fromarray(np.uint8(ours_np * 255)) + return [input_image["image"].convert("RGB"), result_paste], [controlnet_image, result_m] + + def infer( + self, + input_image, + text_guided_prompt, + text_guided_negative_prompt, + shape_guided_prompt, + shape_guided_negative_prompt, + fitting_degree, + ddim_steps, + scale, + seed, + task, + vertical_expansion_ratio, + horizontal_expansion_ratio, + outpaint_prompt, + outpaint_negative_prompt, + removal_prompt, + removal_negative_prompt, + enable_control=False, + input_control_image=None, + control_type="canny", + controlnet_conditioning_scale=None, + ): + if task == "text-guided": + prompt = text_guided_prompt + negative_prompt = text_guided_negative_prompt + elif task == "shape-guided": + prompt = shape_guided_prompt + negative_prompt = shape_guided_negative_prompt + elif task == "object-removal": + prompt = removal_prompt + negative_prompt = removal_negative_prompt + elif task == "image-outpainting": + prompt = outpaint_prompt + negative_prompt = outpaint_negative_prompt + return self.predict( + input_image, + prompt, + fitting_degree, + ddim_steps, + scale, + seed, + negative_prompt, + task, + vertical_expansion_ratio, + horizontal_expansion_ratio, + ) + else: + task = "text-guided" + prompt = text_guided_prompt + negative_prompt = text_guided_negative_prompt + + # currently, we only support controlnet in PowerPaint-v1 + if self.version == "ppt-v1" and enable_control and task == "text-guided": + return self.predict_controlnet( + input_image, + input_control_image, + control_type, + prompt, + ddim_steps, + scale, + seed, + negative_prompt, + controlnet_conditioning_scale, + ) + else: + return self.predict( + input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None + ) + + +if __name__ == "__main__": + args = argparse.ArgumentParser() + args.add_argument("--weight_dtype", type=str, default="float16") + args.add_argument("--checkpoint_dir", type=str, default="./checkpoints/ppt-v1") + args.add_argument("--version", type=str, default="ppt-v1") + args.add_argument("--share", action="store_true") + args.add_argument( + "--local_files_only", action="store_true", help="enable it to use cached files without requesting from the hub" + ) + args.add_argument("--port", type=int, default=7860) + args = args.parse_args() + + # initialize the pipeline controller + weight_dtype = torch.float16 if args.weight_dtype == "float16" else torch.float32 + controller = PowerPaintController(weight_dtype, args.checkpoint_dir, args.local_files_only, args.version) + + # ui + with gr.Blocks(css="style.css") as demo: + with gr.Row(): + gr.Markdown( + "
PowerPaint: High-Quality Versatile Image Inpainting
" # noqa + ) + with gr.Row(): + gr.Markdown( + "
Project Page  " # noqa + "Paper  " + "Code
" # noqa + ) + with gr.Row(): + gr.Markdown( + "**Note:** Due to network-related factors, the page may experience occasional bugs! If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content." # noqa + ) + # Attention: Due to network-related factors, the page may experience occasional bugs. If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content. + with gr.Row(): + with gr.Column(): + gr.Markdown("### Input image and draw mask") + input_image = gr.Image(source="upload", tool="sketch", type="pil") + + task = gr.Radio( + ["text-guided", "object-removal", "shape-guided", "image-outpainting"], + show_label=False, + visible=False, + ) + + # Text-guided object inpainting + with gr.Tab("Text-guided object inpainting") as tab_text_guided: + enable_text_guided = gr.Checkbox( + label="Enable text-guided object inpainting", value=True, interactive=False + ) + text_guided_prompt = gr.Textbox(label="Prompt") + text_guided_negative_prompt = gr.Textbox(label="negative_prompt") + tab_text_guided.select(fn=select_tab_text_guided, inputs=None, outputs=task) + + # currently, we only support controlnet in PowerPaint-v1 + if args.version == "ppt-v1": + gr.Markdown("### Controlnet setting") + enable_control = gr.Checkbox( + label="Enable controlnet", info="Enable this if you want to use controlnet" + ) + controlnet_conditioning_scale = gr.Slider( + label="controlnet conditioning scale", + minimum=0, + maximum=1, + step=0.05, + value=0.5, + ) + control_type = gr.Radio(["canny", "pose", "depth", "hed"], label="Control type") + input_control_image = gr.Image(source="upload", type="pil") + + # Object removal inpainting + with gr.Tab("Object removal inpainting") as tab_object_removal: + enable_object_removal = gr.Checkbox( + label="Enable object removal inpainting", + value=True, + info="The recommended configuration for the Guidance Scale is 10 or higher. \ + If undesired objects appear in the masked area, \ + you can address this by specifically increasing the Guidance Scale.", + interactive=False, + ) + removal_prompt = gr.Textbox(label="Prompt") + removal_negative_prompt = gr.Textbox(label="negative_prompt") + tab_object_removal.select(fn=select_tab_object_removal, inputs=None, outputs=task) + + # Object image outpainting + with gr.Tab("Image outpainting") as tab_image_outpainting: + enable_object_removal = gr.Checkbox( + label="Enable image outpainting", + value=True, + info="The recommended configuration for the Guidance Scale is 10 or higher. \ + If unwanted random objects appear in the extended image region, \ + you can enhance the cleanliness of the extension area by increasing the Guidance Scale.", + interactive=False, + ) + outpaint_prompt = gr.Textbox(label="Outpainting_prompt") + outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt") + horizontal_expansion_ratio = gr.Slider( + label="horizontal expansion ratio", + minimum=1, + maximum=4, + step=0.05, + value=1, + ) + vertical_expansion_ratio = gr.Slider( + label="vertical expansion ratio", + minimum=1, + maximum=4, + step=0.05, + value=1, + ) + tab_image_outpainting.select(fn=select_tab_image_outpainting, inputs=None, outputs=task) + + # Shape-guided object inpainting + with gr.Tab("Shape-guided object inpainting") as tab_shape_guided: + enable_shape_guided = gr.Checkbox( + label="Enable shape-guided object inpainting", value=True, interactive=False + ) + shape_guided_prompt = gr.Textbox(label="shape_guided_prompt") + shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt") + fitting_degree = gr.Slider( + label="fitting degree", + minimum=0, + maximum=1, + step=0.05, + value=1, + ) + tab_shape_guided.select(fn=select_tab_shape_guided, inputs=None, outputs=task) + + run_button = gr.Button(label="Run") + with gr.Accordion("Advanced options", open=False): + ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1) + scale = gr.Slider( + label="Guidance Scale", + info="For object removal and image outpainting, it is recommended to set the value at 10 or above.", + minimum=0.1, + maximum=30.0, + value=7.5, + step=0.1, + ) + seed = gr.Slider( + label="Seed", + minimum=0, + maximum=2147483647, + step=1, + randomize=True, + ) + with gr.Column(): + gr.Markdown("### Inpainting result") + inpaint_result = gr.Gallery(label="Generated images", show_label=False, columns=2) + gr.Markdown("### Mask") + gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2) + + if args.version == "ppt-v1": + run_button.click( + fn=controller.infer, + inputs=[ + input_image, + text_guided_prompt, + text_guided_negative_prompt, + shape_guided_prompt, + shape_guided_negative_prompt, + fitting_degree, + ddim_steps, + scale, + seed, + task, + vertical_expansion_ratio, + horizontal_expansion_ratio, + outpaint_prompt, + outpaint_negative_prompt, + removal_prompt, + removal_negative_prompt, + enable_control, + input_control_image, + control_type, + controlnet_conditioning_scale, + ], + outputs=[inpaint_result, gallery], + ) + else: + run_button.click( + fn=controller.infer, + inputs=[ + input_image, + text_guided_prompt, + text_guided_negative_prompt, + shape_guided_prompt, + shape_guided_negative_prompt, + fitting_degree, + ddim_steps, + scale, + seed, + task, + vertical_expansion_ratio, + horizontal_expansion_ratio, + outpaint_prompt, + outpaint_negative_prompt, + removal_prompt, + removal_negative_prompt, + ], + outputs=[inpaint_result, gallery], + ) + + demo.queue() + demo.launch(share=args.share, server_name="0.0.0.0", server_port=args.port) diff --git a/PowerPaint/assets/accurate_rabbit.jpg b/PowerPaint/assets/accurate_rabbit.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4c5eef14a48ca2bbf08e6ecd9c33fb72d92c1f5f Binary files /dev/null and b/PowerPaint/assets/accurate_rabbit.jpg differ diff --git a/PowerPaint/assets/accurate_rabbit_result.jpg b/PowerPaint/assets/accurate_rabbit_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f39a32828bcd4340e4dc14a1d0fd730a54b66ce8 Binary files /dev/null and b/PowerPaint/assets/accurate_rabbit_result.jpg differ diff --git a/PowerPaint/assets/canny.jpg b/PowerPaint/assets/canny.jpg new file mode 100644 index 0000000000000000000000000000000000000000..efd711bbda4842f1d8d3eb92377272e2aac3fe1b Binary files /dev/null and b/PowerPaint/assets/canny.jpg differ diff --git a/PowerPaint/assets/canny_result.jpg b/PowerPaint/assets/canny_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..05f63ff3d5d309ec7bea81157814b0c82bee2fc5 Binary files /dev/null and b/PowerPaint/assets/canny_result.jpg differ diff --git a/PowerPaint/assets/control_input.jpg b/PowerPaint/assets/control_input.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dba657939f43ec7271f030ff95afa8213c726244 Binary files /dev/null and b/PowerPaint/assets/control_input.jpg differ diff --git a/PowerPaint/assets/depth.jpg b/PowerPaint/assets/depth.jpg new file mode 100644 index 0000000000000000000000000000000000000000..28805c1482abcacd3fbcc61736a3e52844c00e2b Binary files /dev/null and b/PowerPaint/assets/depth.jpg differ diff --git a/PowerPaint/assets/depth_result.jpg b/PowerPaint/assets/depth_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ad76782daf4f15666d8b92519ebdb4f97c6cb388 Binary files /dev/null and b/PowerPaint/assets/depth_result.jpg differ diff --git a/PowerPaint/assets/gradio_objremoval.jpg b/PowerPaint/assets/gradio_objremoval.jpg new file mode 100644 index 0000000000000000000000000000000000000000..185481b16ceead5e5d48a65736980f5ff2c1df6a Binary files /dev/null and b/PowerPaint/assets/gradio_objremoval.jpg differ diff --git a/PowerPaint/assets/gradio_objremoval_result.jpg b/PowerPaint/assets/gradio_objremoval_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..079cace3cc0dd618ba6c2959fe687e92f070b636 Binary files /dev/null and b/PowerPaint/assets/gradio_objremoval_result.jpg differ diff --git a/PowerPaint/assets/gradio_outpaint.jpg b/PowerPaint/assets/gradio_outpaint.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c854241257da799a70bf40d7f8d46bc30ff43253 Binary files /dev/null and b/PowerPaint/assets/gradio_outpaint.jpg differ diff --git a/PowerPaint/assets/gradio_outpaint_result.jpg b/PowerPaint/assets/gradio_outpaint_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6d4754d4299ddb36207d34aaaa71134e7d6b1c68 Binary files /dev/null and b/PowerPaint/assets/gradio_outpaint_result.jpg differ diff --git a/PowerPaint/assets/gradio_text_objinpaint.jpg b/PowerPaint/assets/gradio_text_objinpaint.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cef21f3e05ceb222da7dffb41d28c3fbb1e15f1b Binary files /dev/null and b/PowerPaint/assets/gradio_text_objinpaint.jpg differ diff --git a/PowerPaint/assets/gradio_text_objinpaint_result.jpg b/PowerPaint/assets/gradio_text_objinpaint_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aa5d97865b7f2c861ea4ba25433ad336ac25eb28 Binary files /dev/null and b/PowerPaint/assets/gradio_text_objinpaint_result.jpg differ diff --git a/PowerPaint/assets/hed.jpg b/PowerPaint/assets/hed.jpg new file mode 100644 index 0000000000000000000000000000000000000000..54ab899606c3c2eb14284985c33ad23c6c207aea Binary files /dev/null and b/PowerPaint/assets/hed.jpg differ diff --git a/PowerPaint/assets/hed_result.jpg b/PowerPaint/assets/hed_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e083e44562a1b3372b092bcfbce74125c3f97361 Binary files /dev/null and b/PowerPaint/assets/hed_result.jpg differ diff --git a/PowerPaint/assets/pose_control.jpg b/PowerPaint/assets/pose_control.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3cb89ae457ddd246f633a4ac0da194b685bbb326 Binary files /dev/null and b/PowerPaint/assets/pose_control.jpg differ diff --git a/PowerPaint/assets/pose_input.jpg b/PowerPaint/assets/pose_input.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4c7704c0e7a25cc5ca9a84b388b3abd969929e37 Binary files /dev/null and b/PowerPaint/assets/pose_input.jpg differ diff --git a/PowerPaint/assets/pose_result.jpg b/PowerPaint/assets/pose_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e8bef89035b6ca23d52e9e038feb244525835ecd Binary files /dev/null and b/PowerPaint/assets/pose_result.jpg differ diff --git a/PowerPaint/assets/shapeguided_s1.jpg b/PowerPaint/assets/shapeguided_s1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..89c0cba42c48a04642b884e2c52effa5eb7d581b Binary files /dev/null and b/PowerPaint/assets/shapeguided_s1.jpg differ diff --git a/PowerPaint/assets/shapeguided_s1_rabbit.jpg b/PowerPaint/assets/shapeguided_s1_rabbit.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ba6f0554a355813748e9b1f19d902e2092ba8f57 Binary files /dev/null and b/PowerPaint/assets/shapeguided_s1_rabbit.jpg differ diff --git a/PowerPaint/assets/shapeguided_s1_rabbit_high.jpg b/PowerPaint/assets/shapeguided_s1_rabbit_high.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c17c48fe20f417a4fe1c65d9d031d9e3381cf51a Binary files /dev/null and b/PowerPaint/assets/shapeguided_s1_rabbit_high.jpg differ diff --git a/PowerPaint/assets/shapeguided_s1_rabbit_high_result.jpg b/PowerPaint/assets/shapeguided_s1_rabbit_high_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..56ae03d2b5245f1f14254003f22725839a8cec70 Binary files /dev/null and b/PowerPaint/assets/shapeguided_s1_rabbit_high_result.jpg differ diff --git a/PowerPaint/assets/shapeguided_s1_rabbit_result.jpg b/PowerPaint/assets/shapeguided_s1_rabbit_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f82596286ebe058bc469b51c1418aafb808f4455 Binary files /dev/null and b/PowerPaint/assets/shapeguided_s1_rabbit_result.jpg differ diff --git a/PowerPaint/assets/shapeguided_s1_result.jpg b/PowerPaint/assets/shapeguided_s1_result.jpg new file mode 100644 index 0000000000000000000000000000000000000000..43cfa33a7789629173bc217c4bc0b13861cadf39 Binary files /dev/null and b/PowerPaint/assets/shapeguided_s1_result.jpg differ diff --git a/PowerPaint/powerpaint/models/BrushNet_CA.py b/PowerPaint/powerpaint/models/BrushNet_CA.py new file mode 100644 index 0000000000000000000000000000000000000000..a069c8ed049a05acb1cd6574fddc43b25d0b8a2a --- /dev/null +++ b/PowerPaint/powerpaint/models/BrushNet_CA.py @@ -0,0 +1,958 @@ +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +from torch import nn + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.attention_processor import ( + ADDED_KV_ATTENTION_PROCESSORS, + CROSS_ATTENTION_PROCESSORS, + AttentionProcessor, + AttnAddedKVProcessor, + AttnProcessor, +) +from diffusers.models.embeddings import ( + TextImageProjection, + TextImageTimeEmbedding, + TextTimeEmbedding, + TimestepEmbedding, + Timesteps, +) +from diffusers.models.modeling_utils import ModelMixin +from diffusers.utils import BaseOutput, logging + +from .unet_2d_blocks import ( + CrossAttnDownBlock2D, + DownBlock2D, + get_down_block, + get_mid_block, + get_up_block, +) +from .unet_2d_condition import UNet2DConditionModel + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class BrushNetOutput(BaseOutput): + """ + The output of [`BrushNetModel`]. + + Args: + up_block_res_samples (`tuple[torch.Tensor]`): + A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should + be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be + used to condition the original UNet's upsampling activations. + down_block_res_samples (`tuple[torch.Tensor]`): + A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should + be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be + used to condition the original UNet's downsampling activations. + mid_down_block_re_sample (`torch.Tensor`): + The activation of the midde block (the lowest sample resolution). Each tensor should be of shape + `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. + Output can be used to condition the original UNet's middle block activation. + """ + + up_block_res_samples: Tuple[torch.Tensor] + down_block_res_samples: Tuple[torch.Tensor] + mid_block_res_sample: torch.Tensor + + +class BrushNetModel(ModelMixin, ConfigMixin): + """ + A BrushNet model. + + Args: + in_channels (`int`, defaults to 4): + The number of channels in the input sample. + flip_sin_to_cos (`bool`, defaults to `True`): + Whether to flip the sin to cos in the time embedding. + freq_shift (`int`, defaults to 0): + The frequency shift to apply to the time embedding. + down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): + The tuple of downsample blocks to use. + mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): + Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or + `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): + The tuple of upsample blocks to use. + only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): + block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): + The tuple of output channels for each block. + layers_per_block (`int`, defaults to 2): + The number of layers per block. + downsample_padding (`int`, defaults to 1): + The padding to use for the downsampling convolution. + mid_block_scale_factor (`float`, defaults to 1): + The scale factor to use for the mid block. + act_fn (`str`, defaults to "silu"): + The activation function to use. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups to use for the normalization. If None, normalization and activation layers is skipped + in post-processing. + norm_eps (`float`, defaults to 1e-5): + The epsilon to use for the normalization. + cross_attention_dim (`int`, defaults to 1280): + The dimension of the cross attention features. + transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): + The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for + [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], + [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. + encoder_hid_dim (`int`, *optional*, defaults to None): + If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` + dimension to `cross_attention_dim`. + encoder_hid_dim_type (`str`, *optional*, defaults to `None`): + If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text + embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. + attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): + The dimension of the attention heads. + use_linear_projection (`bool`, defaults to `False`): + class_embed_type (`str`, *optional*, defaults to `None`): + The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, + `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. + addition_embed_type (`str`, *optional*, defaults to `None`): + Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or + "text". "text" will use the `TextTimeEmbedding` layer. + num_class_embeds (`int`, *optional*, defaults to 0): + Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing + class conditioning with `class_embed_type` equal to `None`. + upcast_attention (`bool`, defaults to `False`): + resnet_time_scale_shift (`str`, defaults to `"default"`): + Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. + projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): + The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when + `class_embed_type="projection"`. + brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`): + The channel order of conditional image. Will convert to `rgb` if it's `bgr`. + conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): + The tuple of output channel for each block in the `conditioning_embedding` layer. + global_pool_conditions (`bool`, defaults to `False`): + TODO(Patrick) - unused parameter. + addition_embed_type_num_heads (`int`, defaults to 64): + The number of heads to use for the `TextTimeEmbedding` layer. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels: int = 4, + conditioning_channels: int = 5, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str, ...] = ( + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ), + mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", + up_block_types: Tuple[str, ...] = ( + "UpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + "CrossAttnUpBlock2D", + ), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), + layers_per_block: int = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: int = 1280, + transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, + encoder_hid_dim: Optional[int] = None, + encoder_hid_dim_type: Optional[str] = None, + attention_head_dim: Union[int, Tuple[int, ...]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + addition_embed_type: Optional[str] = None, + addition_time_embed_dim: Optional[int] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + projection_class_embeddings_input_dim: Optional[int] = None, + brushnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), + global_pool_conditions: bool = False, + addition_embed_type_num_heads: int = 64, + ): + super().__init__() + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + if len(down_block_types) != len(up_block_types): + raise ValueError( + f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." + ) + + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + + # input + conv_in_kernel = 3 + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in_condition = nn.Conv2d( + in_channels + conditioning_channels, + block_out_channels[0], + kernel_size=conv_in_kernel, + padding=conv_in_padding, + ) + + # time + time_embed_dim = block_out_channels[0] * 4 + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + ) + + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = "text_proj" + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError( + f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." + ) + + if encoder_hid_dim_type == "text_proj": + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == "text_image_proj": + # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` + self.encoder_hid_proj = TextImageProjection( + text_embed_dim=encoder_hid_dim, + image_embed_dim=cross_attention_dim, + cross_attention_dim=cross_attention_dim, + ) + + elif encoder_hid_dim_type is not None: + raise ValueError( + f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." + ) + else: + self.encoder_hid_proj = None + + # class embedding + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + if addition_embed_type == "text": + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + + self.add_embedding = TextTimeEmbedding( + text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads + ) + elif addition_embed_type == "text_image": + # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` + self.add_embedding = TextImageTimeEmbedding( + text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim + ) + elif addition_embed_type == "text_time": + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + + self.down_blocks = nn.ModuleList([]) + self.brushnet_down_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + # down + output_channel = block_out_channels[0] + + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block, + transformer_layers_per_block=transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + temb_channels=time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads[i], + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + downsample_padding=downsample_padding, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + self.down_blocks.append(down_block) + + for _ in range(layers_per_block): + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + if not is_final_block: + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_down_blocks.append(brushnet_block) + + # mid + mid_block_channel = block_out_channels[-1] + + brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_mid_block = brushnet_block + + self.mid_block = get_mid_block( + mid_block_type, + transformer_layers_per_block=transformer_layers_per_block[-1], + in_channels=mid_block_channel, + temb_channels=time_embed_dim, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + output_scale_factor=mid_block_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads[-1], + resnet_groups=norm_num_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + ) + + # count how many layers upsample the images + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) + only_cross_attention = list(reversed(only_cross_attention)) + + output_channel = reversed_block_out_channels[0] + + self.up_blocks = nn.ModuleList([]) + self.brushnet_up_blocks = nn.ModuleList([]) + + for i, up_block_type in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=layers_per_block + 1, + transformer_layers_per_block=reversed_transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resolution_idx=i, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=reversed_num_attention_heads[i], + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + for _ in range(layers_per_block + 1): + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_up_blocks.append(brushnet_block) + + if not is_final_block: + brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) + brushnet_block = zero_module(brushnet_block) + self.brushnet_up_blocks.append(brushnet_block) + + @classmethod + def from_unet( + cls, + unet: UNet2DConditionModel, + brushnet_conditioning_channel_order: str = "rgb", + conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), + load_weights_from_unet: bool = True, + conditioning_channels: int = 5, + ): + r""" + Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`]. + + Parameters: + unet (`UNet2DConditionModel`): + The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied + where applicable. + """ + transformer_layers_per_block = ( + unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 + ) + encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None + encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None + addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None + addition_time_embed_dim = ( + unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None + ) + + brushnet = cls( + in_channels=unet.config.in_channels, + conditioning_channels=conditioning_channels, + flip_sin_to_cos=unet.config.flip_sin_to_cos, + freq_shift=unet.config.freq_shift, + # down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'], + down_block_types=[ + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ], + # mid_block_type='MidBlock2D', + mid_block_type="UNetMidBlock2DCrossAttn", + # up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'], + up_block_types=["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"], + only_cross_attention=unet.config.only_cross_attention, + block_out_channels=unet.config.block_out_channels, + layers_per_block=unet.config.layers_per_block, + downsample_padding=unet.config.downsample_padding, + mid_block_scale_factor=unet.config.mid_block_scale_factor, + act_fn=unet.config.act_fn, + norm_num_groups=unet.config.norm_num_groups, + norm_eps=unet.config.norm_eps, + cross_attention_dim=unet.config.cross_attention_dim, + transformer_layers_per_block=transformer_layers_per_block, + encoder_hid_dim=encoder_hid_dim, + encoder_hid_dim_type=encoder_hid_dim_type, + attention_head_dim=unet.config.attention_head_dim, + num_attention_heads=unet.config.num_attention_heads, + use_linear_projection=unet.config.use_linear_projection, + class_embed_type=unet.config.class_embed_type, + addition_embed_type=addition_embed_type, + addition_time_embed_dim=addition_time_embed_dim, + num_class_embeds=unet.config.num_class_embeds, + upcast_attention=unet.config.upcast_attention, + resnet_time_scale_shift=unet.config.resnet_time_scale_shift, + projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, + brushnet_conditioning_channel_order=brushnet_conditioning_channel_order, + conditioning_embedding_out_channels=conditioning_embedding_out_channels, + ) + + if load_weights_from_unet: + conv_in_condition_weight = torch.zeros_like(brushnet.conv_in_condition.weight) + conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight + conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight + brushnet.conv_in_condition.weight = torch.nn.Parameter(conv_in_condition_weight) + brushnet.conv_in_condition.bias = unet.conv_in.bias + + brushnet.time_proj.load_state_dict(unet.time_proj.state_dict()) + brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) + + if brushnet.class_embedding: + brushnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) + + brushnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False) + brushnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False) + brushnet.up_blocks.load_state_dict(unet.up_blocks.state_dict(), strict=False) + + return brushnet.to(unet.dtype) + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnAddedKVProcessor() + elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnProcessor() + else: + raise ValueError( + f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" + ) + + self.set_attn_processor(processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice + def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value: bool = False) -> None: + if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): + module.gradient_checkpointing = value + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + brushnet_cond: torch.FloatTensor, + conditioning_scale: float = 1.0, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guess_mode: bool = False, + return_dict: bool = True, + ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]: + """ + The [`BrushNetModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor. + timestep (`Union[torch.Tensor, float, int]`): + The number of timesteps to denoise an input. + encoder_hidden_states (`torch.Tensor`): + The encoder hidden states. + brushnet_cond (`torch.FloatTensor`): + The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. + conditioning_scale (`float`, defaults to `1.0`): + The scale factor for BrushNet outputs. + class_labels (`torch.Tensor`, *optional*, defaults to `None`): + Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. + timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): + Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the + timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep + embeddings. + attention_mask (`torch.Tensor`, *optional*, defaults to `None`): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + added_cond_kwargs (`dict`): + Additional conditions for the Stable Diffusion XL UNet. + cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): + A kwargs dictionary that if specified is passed along to the `AttnProcessor`. + guess_mode (`bool`, defaults to `False`): + In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if + you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. + return_dict (`bool`, defaults to `True`): + Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple. + + Returns: + [`~models.brushnet.BrushNetOutput`] **or** `tuple`: + If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is + returned where the first element is the sample tensor. + """ + # check channel order + channel_order = self.config.brushnet_conditioning_channel_order + + if channel_order == "rgb": + # in rgb order by default + ... + elif channel_order == "bgr": + brushnet_cond = torch.flip(brushnet_cond, dims=[1]) + else: + raise ValueError(f"unknown `brushnet_conditioning_channel_order`: {channel_order}") + + # prepare attention_mask + if attention_mask is not None: + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) + emb = emb + class_emb + + if self.config.addition_embed_type is not None: + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + + elif self.config.addition_embed_type == "text_time": + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + + emb = emb + aug_emb if aug_emb is not None else emb + + # 2. pre-process + brushnet_cond = torch.concat([sample, brushnet_cond], 1) + sample = self.conv_in_condition(brushnet_cond) + + # 3. down + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, temb=emb) + + down_block_res_samples += res_samples + + # 4. PaintingNet down blocks + brushnet_down_block_res_samples = () + for down_block_res_sample, brushnet_down_block in zip(down_block_res_samples, self.brushnet_down_blocks): + down_block_res_sample = brushnet_down_block(down_block_res_sample) + brushnet_down_block_res_samples = brushnet_down_block_res_samples + (down_block_res_sample,) + + # 5. mid + if self.mid_block is not None: + if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + ) + else: + sample = self.mid_block(sample, emb) + + # 6. BrushNet mid blocks + brushnet_mid_block_res_sample = self.brushnet_mid_block(sample) + + # 7. up + up_block_res_samples = () + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample, up_res_samples = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + return_res_samples=True, + ) + else: + sample, up_res_samples = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + upsample_size=upsample_size, + return_res_samples=True, + ) + + up_block_res_samples += up_res_samples + + # 8. BrushNet up blocks + brushnet_up_block_res_samples = () + for up_block_res_sample, brushnet_up_block in zip(up_block_res_samples, self.brushnet_up_blocks): + up_block_res_sample = brushnet_up_block(up_block_res_sample) + brushnet_up_block_res_samples = brushnet_up_block_res_samples + (up_block_res_sample,) + + # 6. scaling + if guess_mode and not self.config.global_pool_conditions: + scales = torch.logspace( + -1, + 0, + len(brushnet_down_block_res_samples) + 1 + len(brushnet_up_block_res_samples), + device=sample.device, + ) # 0.1 to 1.0 + scales = scales * conditioning_scale + + brushnet_down_block_res_samples = [ + sample * scale + for sample, scale in zip( + brushnet_down_block_res_samples, scales[: len(brushnet_down_block_res_samples)] + ) + ] + brushnet_mid_block_res_sample = ( + brushnet_mid_block_res_sample * scales[len(brushnet_down_block_res_samples)] + ) + brushnet_up_block_res_samples = [ + sample * scale + for sample, scale in zip( + brushnet_up_block_res_samples, scales[len(brushnet_down_block_res_samples) + 1 :] + ) + ] + else: + brushnet_down_block_res_samples = [ + sample * conditioning_scale for sample in brushnet_down_block_res_samples + ] + brushnet_mid_block_res_sample = brushnet_mid_block_res_sample * conditioning_scale + brushnet_up_block_res_samples = [sample * conditioning_scale for sample in brushnet_up_block_res_samples] + + if self.config.global_pool_conditions: + brushnet_down_block_res_samples = [ + torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_down_block_res_samples + ] + brushnet_mid_block_res_sample = torch.mean(brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True) + brushnet_up_block_res_samples = [ + torch.mean(sample, dim=(2, 3), keepdim=True) for sample in brushnet_up_block_res_samples + ] + + if not return_dict: + return (brushnet_down_block_res_samples, brushnet_mid_block_res_sample, brushnet_up_block_res_samples) + + return BrushNetOutput( + down_block_res_samples=brushnet_down_block_res_samples, + mid_block_res_sample=brushnet_mid_block_res_sample, + up_block_res_samples=brushnet_up_block_res_samples, + ) + + +def zero_module(module): + for p in module.parameters(): + nn.init.zeros_(p) + return module diff --git a/PowerPaint/powerpaint/models/__init__.py b/PowerPaint/powerpaint/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..13cf7286353babefa198a4bc7a947621b6387cb5 --- /dev/null +++ b/PowerPaint/powerpaint/models/__init__.py @@ -0,0 +1,5 @@ +from .BrushNet_CA import BrushNetModel +from .unet_2d_condition import UNet2DConditionModel + + +__all__ = ["BrushNetModel", "UNet2DConditionModel"] diff --git a/PowerPaint/powerpaint/models/__pycache__/BrushNet_CA.cpython-311.pyc b/PowerPaint/powerpaint/models/__pycache__/BrushNet_CA.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..387a20e9ac4e92773b04f3297e007f7f648a9bf3 Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/BrushNet_CA.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/models/__pycache__/BrushNet_CA.cpython-38.pyc b/PowerPaint/powerpaint/models/__pycache__/BrushNet_CA.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2b2fb45a8c7b7b3d9a648ea781258b62cbee4d34 Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/BrushNet_CA.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/models/__pycache__/__init__.cpython-311.pyc b/PowerPaint/powerpaint/models/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3db6d612bc5eb8948c2afe7e97b0409ebbc66c94 Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/__init__.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/models/__pycache__/__init__.cpython-38.pyc b/PowerPaint/powerpaint/models/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..362f917685a0e43b688289fb64be22ca5114ff1d Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/__init__.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/models/__pycache__/unet_2d_blocks.cpython-311.pyc b/PowerPaint/powerpaint/models/__pycache__/unet_2d_blocks.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..af95302acd01616ed16d265374a9b1e247b224f4 Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/unet_2d_blocks.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/models/__pycache__/unet_2d_blocks.cpython-38.pyc b/PowerPaint/powerpaint/models/__pycache__/unet_2d_blocks.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b48eb7bb2e0f94fcfac3faf9207c9ce2d389c677 Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/unet_2d_blocks.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/models/__pycache__/unet_2d_condition.cpython-311.pyc b/PowerPaint/powerpaint/models/__pycache__/unet_2d_condition.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..784f496ca8a5749979c89ae1696a186241470833 Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/unet_2d_condition.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/models/__pycache__/unet_2d_condition.cpython-38.pyc b/PowerPaint/powerpaint/models/__pycache__/unet_2d_condition.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..938c6d18ce9b953105d7798bff99c160681d3928 Binary files /dev/null and b/PowerPaint/powerpaint/models/__pycache__/unet_2d_condition.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/models/unet_2d_blocks.py b/PowerPaint/powerpaint/models/unet_2d_blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..71a4a6fe8a05d1ed22a4a6bf56a3d586f69e64e1 --- /dev/null +++ b/PowerPaint/powerpaint/models/unet_2d_blocks.py @@ -0,0 +1,3815 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import Any, Dict, Optional, Tuple, Union + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + +from diffusers.models.activations import get_activation +from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 +from diffusers.models.normalization import AdaGroupNorm +from diffusers.models.resnet import ( + Downsample2D, + FirDownsample2D, + FirUpsample2D, + KDownsample2D, + KUpsample2D, + ResnetBlock2D, + ResnetBlockCondNorm2D, + Upsample2D, +) +from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel +from diffusers.models.transformers.transformer_2d import Transformer2DModel +from diffusers.utils import is_torch_version, logging +from diffusers.utils.torch_utils import apply_freeu + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +def get_down_block( + down_block_type: str, + num_layers: int, + in_channels: int, + out_channels: int, + temb_channels: int, + add_downsample: bool, + resnet_eps: float, + resnet_act_fn: str, + transformer_layers_per_block: int = 1, + num_attention_heads: Optional[int] = None, + resnet_groups: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + downsample_padding: Optional[int] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + attention_type: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: float = 1.0, + cross_attention_norm: Optional[str] = None, + attention_head_dim: Optional[int] = None, + downsample_type: Optional[str] = None, + dropout: float = 0.0, +): + # If attn head dim is not defined, we default it to the number of heads + if attention_head_dim is None: + logger.warn( + f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." + ) + attention_head_dim = num_attention_heads + + down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type + if down_block_type == "DownBlock2D": + return DownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "ResnetDownsampleBlock2D": + return ResnetDownsampleBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + ) + elif down_block_type == "AttnDownBlock2D": + if add_downsample is False: + downsample_type = None + else: + downsample_type = downsample_type or "conv" # default to 'conv' + return AttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + downsample_type=downsample_type, + ) + elif down_block_type == "CrossAttnDownBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") + return CrossAttnDownBlock2D( + num_layers=num_layers, + transformer_layers_per_block=transformer_layers_per_block, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + ) + elif down_block_type == "SimpleCrossAttnDownBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D") + return SimpleCrossAttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + ) + elif down_block_type == "SkipDownBlock2D": + return SkipDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "AttnSkipDownBlock2D": + return AttnSkipDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "DownEncoderBlock2D": + return DownEncoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "AttnDownEncoderBlock2D": + return AttnDownEncoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + downsample_padding=downsample_padding, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif down_block_type == "KDownBlock2D": + return KDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + ) + elif down_block_type == "KCrossAttnDownBlock2D": + return KCrossAttnDownBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + dropout=dropout, + add_downsample=add_downsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + add_self_attention=True if not add_downsample else False, + ) + raise ValueError(f"{down_block_type} does not exist.") + + +def get_mid_block( + mid_block_type: str, + temb_channels: int, + in_channels: int, + resnet_eps: float, + resnet_act_fn: str, + resnet_groups: int, + output_scale_factor: float = 1.0, + transformer_layers_per_block: int = 1, + num_attention_heads: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + mid_block_only_cross_attention: bool = False, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + attention_type: str = "default", + resnet_skip_time_act: bool = False, + cross_attention_norm: Optional[str] = None, + attention_head_dim: Optional[int] = 1, + dropout: float = 0.0, +): + if mid_block_type == "UNetMidBlock2DCrossAttn": + return UNetMidBlock2DCrossAttn( + transformer_layers_per_block=transformer_layers_per_block, + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + resnet_groups=resnet_groups, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": + return UNetMidBlock2DSimpleCrossAttn( + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + only_cross_attention=mid_block_only_cross_attention, + cross_attention_norm=cross_attention_norm, + ) + elif mid_block_type == "UNetMidBlock2D": + return UNetMidBlock2D( + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + num_layers=0, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + add_attention=False, + ) + elif mid_block_type == "MidBlock2D": + return MidBlock2D( + in_channels=in_channels, + temb_channels=temb_channels, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + output_scale_factor=output_scale_factor, + resnet_time_scale_shift=resnet_time_scale_shift, + resnet_groups=resnet_groups, + use_linear_projection=use_linear_projection, + ) + elif mid_block_type is None: + return None + else: + raise ValueError(f"unknown mid_block_type : {mid_block_type}") + + +def get_up_block( + up_block_type: str, + num_layers: int, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + add_upsample: bool, + resnet_eps: float, + resnet_act_fn: str, + resolution_idx: Optional[int] = None, + transformer_layers_per_block: int = 1, + num_attention_heads: Optional[int] = None, + resnet_groups: Optional[int] = None, + cross_attention_dim: Optional[int] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + attention_type: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: float = 1.0, + cross_attention_norm: Optional[str] = None, + attention_head_dim: Optional[int] = None, + upsample_type: Optional[str] = None, + dropout: float = 0.0, +) -> nn.Module: + # If attn head dim is not defined, we default it to the number of heads + if attention_head_dim is None: + logger.warn( + f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." + ) + attention_head_dim = num_attention_heads + + up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type + if up_block_type == "UpBlock2D": + return UpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "ResnetUpsampleBlock2D": + return ResnetUpsampleBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + ) + elif up_block_type == "CrossAttnUpBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") + return CrossAttnUpBlock2D( + num_layers=num_layers, + transformer_layers_per_block=transformer_layers_per_block, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + num_attention_heads=num_attention_heads, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + ) + elif up_block_type == "SimpleCrossAttnUpBlock2D": + if cross_attention_dim is None: + raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D") + return SimpleCrossAttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + skip_time_act=resnet_skip_time_act, + output_scale_factor=resnet_out_scale_factor, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + ) + elif up_block_type == "AttnUpBlock2D": + if add_upsample is False: + upsample_type = None + else: + upsample_type = upsample_type or "conv" # default to 'conv' + + return AttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + upsample_type=upsample_type, + ) + elif up_block_type == "SkipUpBlock2D": + return SkipUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "AttnSkipUpBlock2D": + return AttnSkipUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + prev_output_channel=prev_output_channel, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + ) + elif up_block_type == "UpDecoderBlock2D": + return UpDecoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + resnet_time_scale_shift=resnet_time_scale_shift, + temb_channels=temb_channels, + ) + elif up_block_type == "AttnUpDecoderBlock2D": + return AttnUpDecoderBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + resnet_groups=resnet_groups, + attention_head_dim=attention_head_dim, + resnet_time_scale_shift=resnet_time_scale_shift, + temb_channels=temb_channels, + ) + elif up_block_type == "KUpBlock2D": + return KUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + ) + elif up_block_type == "KCrossAttnUpBlock2D": + return KCrossAttnUpBlock2D( + num_layers=num_layers, + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + resolution_idx=resolution_idx, + dropout=dropout, + add_upsample=add_upsample, + resnet_eps=resnet_eps, + resnet_act_fn=resnet_act_fn, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + ) + + raise ValueError(f"{up_block_type} does not exist.") + + +class AutoencoderTinyBlock(nn.Module): + """ + Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU + blocks. + + Args: + in_channels (`int`): The number of input channels. + out_channels (`int`): The number of output channels. + act_fn (`str`): + ` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`. + + Returns: + `torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to + `out_channels`. + """ + + def __init__(self, in_channels: int, out_channels: int, act_fn: str): + super().__init__() + act_fn = get_activation(act_fn) + self.conv = nn.Sequential( + nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), + act_fn, + nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), + act_fn, + nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), + ) + self.skip = ( + nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) + if in_channels != out_channels + else nn.Identity() + ) + self.fuse = nn.ReLU() + + def forward(self, x: torch.FloatTensor) -> torch.FloatTensor: + return self.fuse(self.conv(x) + self.skip(x)) + + +class UNetMidBlock2D(nn.Module): + """ + A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. + + Args: + in_channels (`int`): The number of input channels. + temb_channels (`int`): The number of temporal embedding channels. + dropout (`float`, *optional*, defaults to 0.0): The dropout rate. + num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. + resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. + resnet_time_scale_shift (`str`, *optional*, defaults to `default`): + The type of normalization to apply to the time embeddings. This can help to improve the performance of the + model on tasks with long-range temporal dependencies. + resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. + resnet_groups (`int`, *optional*, defaults to 32): + The number of groups to use in the group normalization layers of the resnet blocks. + attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. + resnet_pre_norm (`bool`, *optional*, defaults to `True`): + Whether to use pre-normalization for the resnet blocks. + add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. + attention_head_dim (`int`, *optional*, defaults to 1): + Dimension of a single attention head. The number of attention heads is determined based on this value and + the number of input channels. + output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. + + Returns: + `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, + in_channels, height, width)`. + + """ + + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", # default, spatial + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + attn_groups: Optional[int] = None, + resnet_pre_norm: bool = True, + add_attention: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + ): + super().__init__() + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + self.add_attention = add_attention + + if attn_groups is None: + attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None + + # there is always at least one resnet + if resnet_time_scale_shift == "spatial": + resnets = [ + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ] + else: + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + if attention_head_dim is None: + logger.warn( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." + ) + attention_head_dim = in_channels + + for _ in range(num_layers): + if self.add_attention: + attentions.append( + Attention( + in_channels, + heads=in_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=attn_groups, + spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + else: + attentions.append(None) + + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: + hidden_states = self.resnets[0](hidden_states, temb) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + if attn is not None: + hidden_states = attn(hidden_states, temb=temb) + hidden_states = resnet(hidden_states, temb) + + return hidden_states + + +class UNetMidBlock2DCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads: int = 1, + output_scale_factor: float = 1.0, + cross_attention_dim: int = 1280, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + upcast_attention: bool = False, + attention_type: str = "default", + ): + super().__init__() + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # support for variable transformer layers per block + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + attentions = [] + + for i in range(num_layers): + if not dual_cross_attention: + attentions.append( + Transformer2DModel( + num_attention_heads, + in_channels // num_attention_heads, + in_channels=in_channels, + num_layers=transformer_layers_per_block[i], + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + ) + else: + attentions.append( + DualTransformer2DModel( + num_attention_heads, + in_channels // num_attention_heads, + in_channels=in_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + ) + ) + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + else: + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + + return hidden_states + + +class UNetMidBlock2DSimpleCrossAttn(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + cross_attention_dim: int = 1280, + skip_time_act: bool = False, + only_cross_attention: bool = False, + cross_attention_norm: Optional[str] = None, + ): + super().__init__() + + self.has_cross_attention = True + + self.attention_head_dim = attention_head_dim + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + self.num_heads = in_channels // self.attention_head_dim + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ] + attentions = [] + + for _ in range(num_layers): + processor = ( + AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() + ) + + attentions.append( + Attention( + query_dim=in_channels, + cross_attention_dim=in_channels, + heads=self.num_heads, + dim_head=self.attention_head_dim, + added_kv_proj_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + bias=True, + upcast_softmax=True, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + processor=processor, + ) + ) + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + lora_scale = cross_attention_kwargs.get("scale", 1.0) + + if attention_mask is None: + # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + # when attention_mask is defined: we don't even check for encoder_attention_mask. + # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. + # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. + # then we can simplify this whole if/else block to: + # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask + mask = attention_mask + + hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) + for attn, resnet in zip(self.attentions, self.resnets[1:]): + # attn + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + + # resnet + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + + return hidden_states + + +class MidBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + use_linear_projection: bool = False, + ): + super().__init__() + + self.has_cross_attention = False + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + + for i in range(num_layers): + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + lora_scale = 1.0 + hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) + for resnet in self.resnets[1:]: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + + return hidden_states + + +class AttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + downsample_padding: int = 1, + downsample_type: str = "conv", + ): + super().__init__() + resnets = [] + attentions = [] + self.downsample_type = downsample_type + + if attention_head_dim is None: + logger.warn( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if downsample_type == "conv": + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + elif downsample_type == "resnet": + self.downsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + down=True, + ) + ] + ) + else: + self.downsamplers = None + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + + lora_scale = cross_attention_kwargs.get("scale", 1.0) + + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + cross_attention_kwargs.update({"scale": lora_scale}) + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + hidden_states = attn(hidden_states, **cross_attention_kwargs) + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + if self.downsample_type == "resnet": + hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale) + else: + hidden_states = downsampler(hidden_states, scale=lora_scale) + + output_states += (hidden_states,) + + return hidden_states, output_states + + +class CrossAttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + downsample_padding: int = 1, + add_downsample: bool = True, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + attention_type: str = "default", + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if not dual_cross_attention: + attentions.append( + Transformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block[i], + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + ) + else: + attentions.append( + DualTransformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + additional_residuals: Optional[torch.FloatTensor] = None, + down_block_add_samples: Optional[torch.FloatTensor] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + output_states = () + + lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + + blocks = list(zip(self.resnets, self.attentions)) + + for i, (resnet, attn) in enumerate(blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + + # apply additional residuals to the output of the last pair of resnet and attention blocks + if i == len(blocks) - 1 and additional_residuals is not None: + hidden_states = hidden_states + additional_residuals + + if down_block_add_samples is not None: + hidden_states = hidden_states + down_block_add_samples.pop(0) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, scale=lora_scale) + + if down_block_add_samples is not None: + hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after + + output_states = output_states + (hidden_states,) + + return hidden_states, output_states + + +class DownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + scale: float = 1.0, + down_block_add_samples: Optional[torch.FloatTensor] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + output_states = () + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb, scale=scale) + + if down_block_add_samples is not None: + hidden_states = hidden_states + down_block_add_samples.pop(0) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, scale=scale) + + if down_block_add_samples is not None: + hidden_states = hidden_states + down_block_add_samples.pop(0) # todo: add before or after + + output_states = output_states + (hidden_states,) + + return hidden_states, output_states + + +class DownEncoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=None, scale=scale) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, scale) + + return hidden_states + + +class AttnDownEncoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + resnets = [] + attentions = [] + + if attention_head_dim is None: + logger.warn( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=None, scale=scale) + cross_attention_kwargs = {"scale": scale} + hidden_states = attn(hidden_states, **cross_attention_kwargs) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, scale) + + return hidden_states + + +class AttnSkipDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = np.sqrt(2.0), + add_downsample: bool = True, + ): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + + if attention_head_dim is None: + logger.warn( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(in_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + self.attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=32, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + if add_downsample: + self.resnet_down = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + down=True, + kernel="fir", + ) + self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + skip_sample: Optional[torch.FloatTensor] = None, + scale: float = 1.0, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb, scale=scale) + cross_attention_kwargs = {"scale": scale} + hidden_states = attn(hidden_states, **cross_attention_kwargs) + output_states += (hidden_states,) + + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb, scale=scale) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + + hidden_states = self.skip_conv(skip_sample) + hidden_states + + output_states += (hidden_states,) + + return hidden_states, output_states, skip_sample + + +class SkipDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + output_scale_factor: float = np.sqrt(2.0), + add_downsample: bool = True, + downsample_padding: int = 1, + ): + super().__init__() + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + self.resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(in_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + if add_downsample: + self.resnet_down = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + down=True, + kernel="fir", + ) + self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)]) + self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) + else: + self.resnet_down = None + self.downsamplers = None + self.skip_conv = None + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + skip_sample: Optional[torch.FloatTensor] = None, + scale: float = 1.0, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]: + output_states = () + + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb, scale) + output_states += (hidden_states,) + + if self.downsamplers is not None: + hidden_states = self.resnet_down(hidden_states, temb, scale) + for downsampler in self.downsamplers: + skip_sample = downsampler(skip_sample) + + hidden_states = self.skip_conv(skip_sample) + hidden_states + + output_states += (hidden_states,) + + return hidden_states, output_states, skip_sample + + +class ResnetDownsampleBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + skip_time_act: bool = False, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + down=True, + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + output_states = () + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb, scale) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, temb, scale) + + output_states = output_states + (hidden_states,) + + return hidden_states, output_states + + +class SimpleCrossAttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + add_downsample: bool = True, + skip_time_act: bool = False, + only_cross_attention: bool = False, + cross_attention_norm: Optional[str] = None, + ): + super().__init__() + + self.has_cross_attention = True + + resnets = [] + attentions = [] + + self.attention_head_dim = attention_head_dim + self.num_heads = out_channels // self.attention_head_dim + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + processor = ( + AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() + ) + + attentions.append( + Attention( + query_dim=out_channels, + cross_attention_dim=out_channels, + heads=self.num_heads, + dim_head=attention_head_dim, + added_kv_proj_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + bias=True, + upcast_softmax=True, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + processor=processor, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + down=True, + ) + ] + ) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + output_states = () + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + + lora_scale = cross_attention_kwargs.get("scale", 1.0) + + if attention_mask is None: + # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + # when attention_mask is defined: we don't even check for encoder_attention_mask. + # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. + # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. + # then we can simplify this whole if/else block to: + # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask + mask = attention_mask + + for resnet, attn in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + + output_states = output_states + (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states, temb, scale=lora_scale) + + output_states = output_states + (hidden_states,) + + return hidden_states, output_states + + +class KDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 4, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + resnet_group_size: int = 32, + add_downsample: bool = False, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + temb_channels=temb_channels, + groups=groups, + groups_out=groups_out, + eps=resnet_eps, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_downsample: + # YiYi's comments- might be able to use FirDownsample2D, look into details later + self.downsamplers = nn.ModuleList([KDownsample2D()]) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + output_states = () + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb, scale) + + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states, output_states + + +class KCrossAttnDownBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + cross_attention_dim: int, + dropout: float = 0.0, + num_layers: int = 4, + resnet_group_size: int = 32, + add_downsample: bool = True, + attention_head_dim: int = 64, + add_self_attention: bool = False, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + dropout=dropout, + temb_channels=temb_channels, + groups=groups, + groups_out=groups_out, + eps=resnet_eps, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + attentions.append( + KAttentionBlock( + out_channels, + out_channels // attention_head_dim, + attention_head_dim, + cross_attention_dim=cross_attention_dim, + temb_channels=temb_channels, + attention_bias=True, + add_self_attention=add_self_attention, + cross_attention_norm="layer_norm", + group_size=resnet_group_size, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.attentions = nn.ModuleList(attentions) + + if add_downsample: + self.downsamplers = nn.ModuleList([KDownsample2D()]) + else: + self.downsamplers = None + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: + output_states = () + lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + + for resnet, attn in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + + if self.downsamplers is None: + output_states += (None,) + else: + output_states += (hidden_states,) + + if self.downsamplers is not None: + for downsampler in self.downsamplers: + hidden_states = downsampler(hidden_states) + + return hidden_states, output_states + + +class AttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: int = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + upsample_type: str = "conv", + ): + super().__init__() + resnets = [] + attentions = [] + + self.upsample_type = upsample_type + + if attention_head_dim is None: + logger.warn( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if upsample_type == "conv": + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + elif upsample_type == "resnet": + self.upsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + up=True, + ) + ] + ) + else: + self.upsamplers = None + + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + scale: float = 1.0, + ) -> torch.FloatTensor: + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb, scale=scale) + cross_attention_kwargs = {"scale": scale} + hidden_states = attn(hidden_states, **cross_attention_kwargs) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + if self.upsample_type == "resnet": + hidden_states = upsampler(hidden_states, temb=temb, scale=scale) + else: + hidden_states = upsampler(hidden_states, scale=scale) + + return hidden_states + + +class CrossAttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + transformer_layers_per_block: Union[int, Tuple[int]] = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + num_attention_heads: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + upcast_attention: bool = False, + attention_type: str = "default", + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + self.num_attention_heads = num_attention_heads + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * num_layers + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + if not dual_cross_attention: + attentions.append( + Transformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=transformer_layers_per_block[i], + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention, + upcast_attention=upcast_attention, + attention_type=attention_type, + ) + ) + else: + attentions.append( + DualTransformer2DModel( + num_attention_heads, + out_channels // num_attention_heads, + in_channels=out_channels, + num_layers=1, + cross_attention_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + return_res_samples: Optional[bool] = False, + up_block_add_samples: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + is_freeu_enabled = ( + getattr(self, "s1", None) + and getattr(self, "s2", None) + and getattr(self, "b1", None) + and getattr(self, "b2", None) + ) + if return_res_samples: + output_states = () + + for resnet, attn in zip(self.resnets, self.attentions): + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + + # FreeU: Only operate on the first two stages + if is_freeu_enabled: + hidden_states, res_hidden_states = apply_freeu( + self.resolution_idx, + hidden_states, + res_hidden_states, + s1=self.s1, + s2=self.s2, + b1=self.b1, + b2=self.b2, + ) + + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + return_dict=False, + )[0] + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale) + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) + + if return_res_samples: + return hidden_states, output_states + else: + return hidden_states + + +class UpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + scale: float = 1.0, + return_res_samples: Optional[bool] = False, + up_block_add_samples: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + is_freeu_enabled = ( + getattr(self, "s1", None) + and getattr(self, "s2", None) + and getattr(self, "b1", None) + and getattr(self, "b2", None) + ) + if return_res_samples: + output_states = () + + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + + # FreeU: Only operate on the first two stages + if is_freeu_enabled: + hidden_states, res_hidden_states = apply_freeu( + self.resolution_idx, + hidden_states, + res_hidden_states, + s1=self.s1, + s2=self.s2, + b1=self.b1, + b2=self.b2, + ) + + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb, scale=scale) + + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, upsample_size, scale=scale) + + if return_res_samples: + output_states = output_states + (hidden_states,) + if up_block_add_samples is not None: + hidden_states = hidden_states + up_block_add_samples.pop(0) # todo: add before or after + + if return_res_samples: + return hidden_states, output_states + else: + return hidden_states + + +class UpDecoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", # default, spatial + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + temb_channels: Optional[int] = None, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.resolution_idx = resolution_idx + + def forward( + self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 + ) -> torch.FloatTensor: + for resnet in self.resnets: + hidden_states = resnet(hidden_states, temb=temb, scale=scale) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class AttnUpDecoderBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + temb_channels: Optional[int] = None, + ): + super().__init__() + resnets = [] + attentions = [] + + if attention_head_dim is None: + logger.warn( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + if resnet_time_scale_shift == "spatial": + resnets.append( + ResnetBlockCondNorm2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm="spatial", + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + ) + ) + else: + resnets.append( + ResnetBlock2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None, + spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + self.resolution_idx = resolution_idx + + def forward( + self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 + ) -> torch.FloatTensor: + for resnet, attn in zip(self.resnets, self.attentions): + hidden_states = resnet(hidden_states, temb=temb, scale=scale) + cross_attention_kwargs = {"scale": scale} + hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, scale=scale) + + return hidden_states + + +class AttnSkipUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + output_scale_factor: float = np.sqrt(2.0), + add_upsample: bool = True, + ): + super().__init__() + self.attentions = nn.ModuleList([]) + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + self.resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(resnet_in_channels + res_skip_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + if attention_head_dim is None: + logger.warn( + f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}." + ) + attention_head_dim = out_channels + + self.attentions.append( + Attention( + out_channels, + heads=out_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=32, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + up=True, + kernel="fir", + ) + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm( + num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True + ) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + skip_sample=None, + scale: float = 1.0, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb, scale=scale) + + cross_attention_kwargs = {"scale": scale} + hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs) + + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + + skip_sample = skip_sample + skip_sample_states + + hidden_states = self.resnet_up(hidden_states, temb, scale=scale) + + return hidden_states, skip_sample + + +class SkipUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_pre_norm: bool = True, + output_scale_factor: float = np.sqrt(2.0), + add_upsample: bool = True, + upsample_padding: int = 1, + ): + super().__init__() + self.resnets = nn.ModuleList([]) + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + self.resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min((resnet_in_channels + res_skip_channels) // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) + if add_upsample: + self.resnet_up = ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=min(out_channels // 4, 32), + groups_out=min(out_channels // 4, 32), + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + use_in_shortcut=True, + up=True, + kernel="fir", + ) + self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) + self.skip_norm = torch.nn.GroupNorm( + num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True + ) + self.act = nn.SiLU() + else: + self.resnet_up = None + self.skip_conv = None + self.skip_norm = None + self.act = None + + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + skip_sample=None, + scale: float = 1.0, + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + hidden_states = resnet(hidden_states, temb, scale=scale) + + if skip_sample is not None: + skip_sample = self.upsampler(skip_sample) + else: + skip_sample = 0 + + if self.resnet_up is not None: + skip_sample_states = self.skip_norm(hidden_states) + skip_sample_states = self.act(skip_sample_states) + skip_sample_states = self.skip_conv(skip_sample_states) + + skip_sample = skip_sample + skip_sample_states + + hidden_states = self.resnet_up(hidden_states, temb, scale=scale) + + return hidden_states, skip_sample + + +class ResnetUpsampleBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + prev_output_channel: int, + out_channels: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + skip_time_act: bool = False, + ): + super().__init__() + resnets = [] + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + up=True, + ) + ] + ) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + scale: float = 1.0, + ) -> torch.FloatTensor: + for resnet in self.resnets: + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb, scale=scale) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, temb, scale=scale) + + return hidden_states + + +class SimpleCrossAttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + prev_output_channel: int, + temb_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + attention_head_dim: int = 1, + cross_attention_dim: int = 1280, + output_scale_factor: float = 1.0, + add_upsample: bool = True, + skip_time_act: bool = False, + only_cross_attention: bool = False, + cross_attention_norm: Optional[str] = None, + ): + super().__init__() + resnets = [] + attentions = [] + + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + + self.num_heads = out_channels // self.attention_head_dim + + for i in range(num_layers): + res_skip_channels = in_channels if (i == num_layers - 1) else out_channels + resnet_in_channels = prev_output_channel if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=resnet_in_channels + res_skip_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + ) + ) + + processor = ( + AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor() + ) + + attentions.append( + Attention( + query_dim=out_channels, + cross_attention_dim=out_channels, + heads=self.num_heads, + dim_head=self.attention_head_dim, + added_kv_proj_dim=cross_attention_dim, + norm_num_groups=resnet_groups, + bias=True, + upcast_softmax=True, + only_cross_attention=only_cross_attention, + cross_attention_norm=cross_attention_norm, + processor=processor, + ) + ) + self.attentions = nn.ModuleList(attentions) + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList( + [ + ResnetBlock2D( + in_channels=out_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + skip_time_act=skip_time_act, + up=True, + ) + ] + ) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + + lora_scale = cross_attention_kwargs.get("scale", 1.0) + if attention_mask is None: + # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask. + mask = None if encoder_hidden_states is None else encoder_attention_mask + else: + # when attention_mask is defined: we don't even check for encoder_attention_mask. + # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks. + # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask. + # then we can simplify this whole if/else block to: + # mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask + mask = attention_mask + + for resnet, attn in zip(self.resnets, self.attentions): + # resnet + # pop res hidden states + res_hidden_states = res_hidden_states_tuple[-1] + res_hidden_states_tuple = res_hidden_states_tuple[:-1] + hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) + + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=mask, + **cross_attention_kwargs, + ) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states, temb, scale=lora_scale) + + return hidden_states + + +class KUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + resolution_idx: int, + dropout: float = 0.0, + num_layers: int = 5, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + resnet_group_size: Optional[int] = 32, + add_upsample: bool = True, + ): + super().__init__() + resnets = [] + k_in_channels = 2 * out_channels + k_out_channels = in_channels + num_layers = num_layers - 1 + + for i in range(num_layers): + in_channels = k_in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=k_out_channels if (i == num_layers - 1) else out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=groups, + groups_out=groups_out, + dropout=dropout, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + + self.resnets = nn.ModuleList(resnets) + + if add_upsample: + self.upsamplers = nn.ModuleList([KUpsample2D()]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + upsample_size: Optional[int] = None, + scale: float = 1.0, + ) -> torch.FloatTensor: + res_hidden_states_tuple = res_hidden_states_tuple[-1] + if res_hidden_states_tuple is not None: + hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) + + for resnet in self.resnets: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + if is_torch_version(">=", "1.11.0"): + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb, use_reentrant=False + ) + else: + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), hidden_states, temb + ) + else: + hidden_states = resnet(hidden_states, temb, scale=scale) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +class KCrossAttnUpBlock2D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + temb_channels: int, + resolution_idx: int, + dropout: float = 0.0, + num_layers: int = 4, + resnet_eps: float = 1e-5, + resnet_act_fn: str = "gelu", + resnet_group_size: int = 32, + attention_head_dim: int = 1, # attention dim_head + cross_attention_dim: int = 768, + add_upsample: bool = True, + upcast_attention: bool = False, + ): + super().__init__() + resnets = [] + attentions = [] + + is_first_block = in_channels == out_channels == temb_channels + is_middle_block = in_channels != out_channels + add_self_attention = True if is_first_block else False + + self.has_cross_attention = True + self.attention_head_dim = attention_head_dim + + # in_channels, and out_channels for the block (k-unet) + k_in_channels = out_channels if is_first_block else 2 * out_channels + k_out_channels = in_channels + + num_layers = num_layers - 1 + + for i in range(num_layers): + in_channels = k_in_channels if i == 0 else out_channels + groups = in_channels // resnet_group_size + groups_out = out_channels // resnet_group_size + + if is_middle_block and (i == num_layers - 1): + conv_2d_out_channels = k_out_channels + else: + conv_2d_out_channels = None + + resnets.append( + ResnetBlockCondNorm2D( + in_channels=in_channels, + out_channels=out_channels, + conv_2d_out_channels=conv_2d_out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=groups, + groups_out=groups_out, + dropout=dropout, + non_linearity=resnet_act_fn, + time_embedding_norm="ada_group", + conv_shortcut_bias=False, + ) + ) + attentions.append( + KAttentionBlock( + k_out_channels if (i == num_layers - 1) else out_channels, + k_out_channels // attention_head_dim + if (i == num_layers - 1) + else out_channels // attention_head_dim, + attention_head_dim, + cross_attention_dim=cross_attention_dim, + temb_channels=temb_channels, + attention_bias=True, + add_self_attention=add_self_attention, + cross_attention_norm="layer_norm", + upcast_attention=upcast_attention, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.attentions = nn.ModuleList(attentions) + + if add_upsample: + self.upsamplers = nn.ModuleList([KUpsample2D()]) + else: + self.upsamplers = None + + self.gradient_checkpointing = False + self.resolution_idx = resolution_idx + + def forward( + self, + hidden_states: torch.FloatTensor, + res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], + temb: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + upsample_size: Optional[int] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + res_hidden_states_tuple = res_hidden_states_tuple[-1] + if res_hidden_states_tuple is not None: + hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1) + + lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + for resnet, attn in zip(self.resnets, self.attentions): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(resnet), + hidden_states, + temb, + **ckpt_kwargs, + ) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + else: + hidden_states = resnet(hidden_states, temb, scale=lora_scale) + hidden_states = attn( + hidden_states, + encoder_hidden_states=encoder_hidden_states, + emb=temb, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + + if self.upsamplers is not None: + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + + return hidden_states + + +# can potentially later be renamed to `No-feed-forward` attention +class KAttentionBlock(nn.Module): + r""" + A basic Transformer block. + + Parameters: + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. + attention_bias (`bool`, *optional*, defaults to `False`): + Configure if the attention layers should contain a bias parameter. + upcast_attention (`bool`, *optional*, defaults to `False`): + Set to `True` to upcast the attention computation to `float32`. + temb_channels (`int`, *optional*, defaults to 768): + The number of channels in the token embedding. + add_self_attention (`bool`, *optional*, defaults to `False`): + Set to `True` to add self-attention to the block. + cross_attention_norm (`str`, *optional*, defaults to `None`): + The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. + group_size (`int`, *optional*, defaults to 32): + The number of groups to separate the channels into for group normalization. + """ + + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + dropout: float = 0.0, + cross_attention_dim: Optional[int] = None, + attention_bias: bool = False, + upcast_attention: bool = False, + temb_channels: int = 768, # for ada_group_norm + add_self_attention: bool = False, + cross_attention_norm: Optional[str] = None, + group_size: int = 32, + ): + super().__init__() + self.add_self_attention = add_self_attention + + # 1. Self-Attn + if add_self_attention: + self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) + self.attn1 = Attention( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + cross_attention_dim=None, + cross_attention_norm=None, + ) + + # 2. Cross-Attn + self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size)) + self.attn2 = Attention( + query_dim=dim, + cross_attention_dim=cross_attention_dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + cross_attention_norm=cross_attention_norm, + ) + + def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: + return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1) + + def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor: + return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight) + + def forward( + self, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + # TODO: mark emb as non-optional (self.norm2 requires it). + # requires assessing impact of change to positional param interface. + emb: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + + # 1. Self-Attention + if self.add_self_attention: + norm_hidden_states = self.norm1(hidden_states, emb) + + height, weight = norm_hidden_states.shape[2:] + norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) + + attn_output = self.attn1( + norm_hidden_states, + encoder_hidden_states=None, + attention_mask=attention_mask, + **cross_attention_kwargs, + ) + attn_output = self._to_4d(attn_output, height, weight) + + hidden_states = attn_output + hidden_states + + # 2. Cross-Attention/None + norm_hidden_states = self.norm2(hidden_states, emb) + + height, weight = norm_hidden_states.shape[2:] + norm_hidden_states = self._to_3d(norm_hidden_states, height, weight) + attn_output = self.attn2( + norm_hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask, + **cross_attention_kwargs, + ) + attn_output = self._to_4d(attn_output, height, weight) + + hidden_states = attn_output + hidden_states + + return hidden_states diff --git a/PowerPaint/powerpaint/models/unet_2d_condition.py b/PowerPaint/powerpaint/models/unet_2d_condition.py new file mode 100644 index 0000000000000000000000000000000000000000..c1a16b44c292ecd952556900db6b3aa5a3b1d996 --- /dev/null +++ b/PowerPaint/powerpaint/models/unet_2d_condition.py @@ -0,0 +1,1363 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.utils.checkpoint + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin +from diffusers.models.activations import get_activation +from diffusers.models.attention_processor import ( + ADDED_KV_ATTENTION_PROCESSORS, + CROSS_ATTENTION_PROCESSORS, + Attention, + AttentionProcessor, + AttnAddedKVProcessor, + AttnProcessor, +) +from diffusers.models.embeddings import ( + GaussianFourierProjection, + GLIGENTextBoundingboxProjection, + ImageHintTimeEmbedding, + ImageProjection, + ImageTimeEmbedding, + TextImageProjection, + TextImageTimeEmbedding, + TextTimeEmbedding, + TimestepEmbedding, + Timesteps, +) +from diffusers.models.modeling_utils import ModelMixin +from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers + +from .unet_2d_blocks import ( + get_down_block, + get_mid_block, + get_up_block, +) + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class UNet2DConditionOutput(BaseOutput): + """ + The output of [`UNet2DConditionModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. + """ + + sample: torch.FloatTensor = None + + +class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): + r""" + A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample + shaped output. + + This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented + for all models (such as downloading or saving). + + Parameters: + sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): + Height and width of input/output sample. + in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. + out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. + center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. + flip_sin_to_cos (`bool`, *optional*, defaults to `False`): + Whether to flip the sin to cos in the time embedding. + freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. + down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): + The tuple of downsample blocks to use. + mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): + Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or + `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): + The tuple of upsample blocks to use. + only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): + Whether to include self-attention in the basic transformer blocks, see + [`~models.attention.BasicTransformerBlock`]. + block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): + The tuple of output channels for each block. + layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. + downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. + mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. + norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. + If `None`, normalization and activation layers is skipped in post-processing. + norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. + cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): + The dimension of the cross attention features. + transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): + The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for + [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], + [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. + reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None): + The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling + blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for + [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], + [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. + encoder_hid_dim (`int`, *optional*, defaults to None): + If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` + dimension to `cross_attention_dim`. + encoder_hid_dim_type (`str`, *optional*, defaults to `None`): + If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text + embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. + attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. + num_attention_heads (`int`, *optional*): + The number of attention heads. If not defined, defaults to `attention_head_dim` + resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config + for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. + class_embed_type (`str`, *optional*, defaults to `None`): + The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, + `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. + addition_embed_type (`str`, *optional*, defaults to `None`): + Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or + "text". "text" will use the `TextTimeEmbedding` layer. + addition_time_embed_dim: (`int`, *optional*, defaults to `None`): + Dimension for the timestep embeddings. + num_class_embeds (`int`, *optional*, defaults to `None`): + Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing + class conditioning with `class_embed_type` equal to `None`. + time_embedding_type (`str`, *optional*, defaults to `positional`): + The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. + time_embedding_dim (`int`, *optional*, defaults to `None`): + An optional override for the dimension of the projected time embedding. + time_embedding_act_fn (`str`, *optional*, defaults to `None`): + Optional activation function to use only once on the time embeddings before they are passed to the rest of + the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. + timestep_post_act (`str`, *optional*, defaults to `None`): + The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. + time_cond_proj_dim (`int`, *optional*, defaults to `None`): + The dimension of `cond_proj` layer in the timestep embedding. + conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`, + *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`, + *optional*): The dimension of the `class_labels` input when + `class_embed_type="projection"`. Required when `class_embed_type="projection"`. + class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time + embeddings with the class embeddings. + mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): + Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If + `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the + `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` + otherwise. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + sample_size: Optional[int] = None, + in_channels: int = 4, + out_channels: int = 4, + center_input_sample: bool = False, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + down_block_types: Tuple[str] = ( + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "CrossAttnDownBlock2D", + "DownBlock2D", + ), + mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", + up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), + only_cross_attention: Union[bool, Tuple[bool]] = False, + block_out_channels: Tuple[int] = (320, 640, 1280, 1280), + layers_per_block: Union[int, Tuple[int]] = 2, + downsample_padding: int = 1, + mid_block_scale_factor: float = 1, + dropout: float = 0.0, + act_fn: str = "silu", + norm_num_groups: Optional[int] = 32, + norm_eps: float = 1e-5, + cross_attention_dim: Union[int, Tuple[int]] = 1280, + transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, + reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, + encoder_hid_dim: Optional[int] = None, + encoder_hid_dim_type: Optional[str] = None, + attention_head_dim: Union[int, Tuple[int]] = 8, + num_attention_heads: Optional[Union[int, Tuple[int]]] = None, + dual_cross_attention: bool = False, + use_linear_projection: bool = False, + class_embed_type: Optional[str] = None, + addition_embed_type: Optional[str] = None, + addition_time_embed_dim: Optional[int] = None, + num_class_embeds: Optional[int] = None, + upcast_attention: bool = False, + resnet_time_scale_shift: str = "default", + resnet_skip_time_act: bool = False, + resnet_out_scale_factor: float = 1.0, + time_embedding_type: str = "positional", + time_embedding_dim: Optional[int] = None, + time_embedding_act_fn: Optional[str] = None, + timestep_post_act: Optional[str] = None, + time_cond_proj_dim: Optional[int] = None, + conv_in_kernel: int = 3, + conv_out_kernel: int = 3, + projection_class_embeddings_input_dim: Optional[int] = None, + attention_type: str = "default", + class_embeddings_concat: bool = False, + mid_block_only_cross_attention: Optional[bool] = None, + cross_attention_norm: Optional[str] = None, + addition_embed_type_num_heads: int = 64, + ): + super().__init__() + + self.sample_size = sample_size + + if num_attention_heads is not None: + raise ValueError( + "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." + ) + + # If `num_attention_heads` is not defined (which is the case for most models) + # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. + # The reason for this behavior is to correct for incorrectly named variables that were introduced + # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 + # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking + # which is why we correct for the naming here. + num_attention_heads = num_attention_heads or attention_head_dim + + # Check inputs + self._check_config( + down_block_types=down_block_types, + up_block_types=up_block_types, + only_cross_attention=only_cross_attention, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + cross_attention_dim=cross_attention_dim, + transformer_layers_per_block=transformer_layers_per_block, + reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, + attention_head_dim=attention_head_dim, + num_attention_heads=num_attention_heads, + ) + + # input + conv_in_padding = (conv_in_kernel - 1) // 2 + self.conv_in = nn.Conv2d( + in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding + ) + + # time + time_embed_dim, timestep_input_dim = self._set_time_proj( + time_embedding_type, + block_out_channels=block_out_channels, + flip_sin_to_cos=flip_sin_to_cos, + freq_shift=freq_shift, + time_embedding_dim=time_embedding_dim, + ) + + self.time_embedding = TimestepEmbedding( + timestep_input_dim, + time_embed_dim, + act_fn=act_fn, + post_act_fn=timestep_post_act, + cond_proj_dim=time_cond_proj_dim, + ) + + self._set_encoder_hid_proj( + encoder_hid_dim_type, + cross_attention_dim=cross_attention_dim, + encoder_hid_dim=encoder_hid_dim, + ) + + # class embedding + self._set_class_embedding( + class_embed_type, + act_fn=act_fn, + num_class_embeds=num_class_embeds, + projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, + time_embed_dim=time_embed_dim, + timestep_input_dim=timestep_input_dim, + ) + + self._set_add_embedding( + addition_embed_type, + addition_embed_type_num_heads=addition_embed_type_num_heads, + addition_time_embed_dim=addition_time_embed_dim, + cross_attention_dim=cross_attention_dim, + encoder_hid_dim=encoder_hid_dim, + flip_sin_to_cos=flip_sin_to_cos, + freq_shift=freq_shift, + projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, + time_embed_dim=time_embed_dim, + ) + + if time_embedding_act_fn is None: + self.time_embed_act = None + else: + self.time_embed_act = get_activation(time_embedding_act_fn) + + self.down_blocks = nn.ModuleList([]) + self.up_blocks = nn.ModuleList([]) + + if isinstance(only_cross_attention, bool): + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = only_cross_attention + + only_cross_attention = [only_cross_attention] * len(down_block_types) + + if mid_block_only_cross_attention is None: + mid_block_only_cross_attention = False + + if isinstance(num_attention_heads, int): + num_attention_heads = (num_attention_heads,) * len(down_block_types) + + if isinstance(attention_head_dim, int): + attention_head_dim = (attention_head_dim,) * len(down_block_types) + + if isinstance(cross_attention_dim, int): + cross_attention_dim = (cross_attention_dim,) * len(down_block_types) + + if isinstance(layers_per_block, int): + layers_per_block = [layers_per_block] * len(down_block_types) + + if isinstance(transformer_layers_per_block, int): + transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) + + if class_embeddings_concat: + # The time embeddings are concatenated with the class embeddings. The dimension of the + # time embeddings passed to the down, middle, and up blocks is twice the dimension of the + # regular time embeddings + blocks_time_embed_dim = time_embed_dim * 2 + else: + blocks_time_embed_dim = time_embed_dim + + # down + output_channel = block_out_channels[0] + for i, down_block_type in enumerate(down_block_types): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = get_down_block( + down_block_type, + num_layers=layers_per_block[i], + transformer_layers_per_block=transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + temb_channels=blocks_time_embed_dim, + add_downsample=not is_final_block, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + cross_attention_dim=cross_attention_dim[i], + num_attention_heads=num_attention_heads[i], + downsample_padding=downsample_padding, + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + dropout=dropout, + ) + self.down_blocks.append(down_block) + + # mid + self.mid_block = get_mid_block( + mid_block_type, + temb_channels=blocks_time_embed_dim, + in_channels=block_out_channels[-1], + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + output_scale_factor=mid_block_scale_factor, + transformer_layers_per_block=transformer_layers_per_block[-1], + num_attention_heads=num_attention_heads[-1], + cross_attention_dim=cross_attention_dim[-1], + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + mid_block_only_cross_attention=mid_block_only_cross_attention, + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + resnet_skip_time_act=resnet_skip_time_act, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[-1], + dropout=dropout, + ) + + # count how many layers upsample the images + self.num_upsamplers = 0 + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + reversed_num_attention_heads = list(reversed(num_attention_heads)) + reversed_layers_per_block = list(reversed(layers_per_block)) + reversed_cross_attention_dim = list(reversed(cross_attention_dim)) + reversed_transformer_layers_per_block = ( + list(reversed(transformer_layers_per_block)) + if reverse_transformer_layers_per_block is None + else reverse_transformer_layers_per_block + ) + only_cross_attention = list(reversed(only_cross_attention)) + + output_channel = reversed_block_out_channels[0] + for i, up_block_type in enumerate(up_block_types): + is_final_block = i == len(block_out_channels) - 1 + + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] + + # add upsample block for all BUT final layer + if not is_final_block: + add_upsample = True + self.num_upsamplers += 1 + else: + add_upsample = False + + up_block = get_up_block( + up_block_type, + num_layers=reversed_layers_per_block[i] + 1, + transformer_layers_per_block=reversed_transformer_layers_per_block[i], + in_channels=input_channel, + out_channels=output_channel, + prev_output_channel=prev_output_channel, + temb_channels=blocks_time_embed_dim, + add_upsample=add_upsample, + resnet_eps=norm_eps, + resnet_act_fn=act_fn, + resolution_idx=i, + resnet_groups=norm_num_groups, + cross_attention_dim=reversed_cross_attention_dim[i], + num_attention_heads=reversed_num_attention_heads[i], + dual_cross_attention=dual_cross_attention, + use_linear_projection=use_linear_projection, + only_cross_attention=only_cross_attention[i], + upcast_attention=upcast_attention, + resnet_time_scale_shift=resnet_time_scale_shift, + attention_type=attention_type, + resnet_skip_time_act=resnet_skip_time_act, + resnet_out_scale_factor=resnet_out_scale_factor, + cross_attention_norm=cross_attention_norm, + attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, + dropout=dropout, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + if norm_num_groups is not None: + self.conv_norm_out = nn.GroupNorm( + num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps + ) + + self.conv_act = get_activation(act_fn) + + else: + self.conv_norm_out = None + self.conv_act = None + + conv_out_padding = (conv_out_kernel - 1) // 2 + self.conv_out = nn.Conv2d( + block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding + ) + + self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim) + + def _check_config( + self, + down_block_types: Tuple[str], + up_block_types: Tuple[str], + only_cross_attention: Union[bool, Tuple[bool]], + block_out_channels: Tuple[int], + layers_per_block: Union[int, Tuple[int]], + cross_attention_dim: Union[int, Tuple[int]], + transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]], + reverse_transformer_layers_per_block: bool, + attention_head_dim: int, + num_attention_heads: Optional[Union[int, Tuple[int]]], + ): + if len(down_block_types) != len(up_block_types): + raise ValueError( + f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." + ) + + if len(block_out_channels) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." + ) + + if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." + ) + + if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): + raise ValueError( + f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." + ) + if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: + for layer_number_per_block in transformer_layers_per_block: + if isinstance(layer_number_per_block, list): + raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") + + def _set_time_proj( + self, + time_embedding_type: str, + block_out_channels: int, + flip_sin_to_cos: bool, + freq_shift: float, + time_embedding_dim: int, + ) -> Tuple[int, int]: + if time_embedding_type == "fourier": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 + if time_embed_dim % 2 != 0: + raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") + self.time_proj = GaussianFourierProjection( + time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos + ) + timestep_input_dim = time_embed_dim + elif time_embedding_type == "positional": + time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 + + self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) + timestep_input_dim = block_out_channels[0] + else: + raise ValueError( + f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." + ) + + return time_embed_dim, timestep_input_dim + + def _set_encoder_hid_proj( + self, + encoder_hid_dim_type: Optional[str], + cross_attention_dim: Union[int, Tuple[int]], + encoder_hid_dim: Optional[int], + ): + if encoder_hid_dim_type is None and encoder_hid_dim is not None: + encoder_hid_dim_type = "text_proj" + self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) + logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") + + if encoder_hid_dim is None and encoder_hid_dim_type is not None: + raise ValueError( + f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." + ) + + if encoder_hid_dim_type == "text_proj": + self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) + elif encoder_hid_dim_type == "text_image_proj": + # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` + self.encoder_hid_proj = TextImageProjection( + text_embed_dim=encoder_hid_dim, + image_embed_dim=cross_attention_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 + self.encoder_hid_proj = ImageProjection( + image_embed_dim=encoder_hid_dim, + cross_attention_dim=cross_attention_dim, + ) + elif encoder_hid_dim_type is not None: + raise ValueError( + f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." + ) + else: + self.encoder_hid_proj = None + + def _set_class_embedding( + self, + class_embed_type: Optional[str], + act_fn: str, + num_class_embeds: Optional[int], + projection_class_embeddings_input_dim: Optional[int], + time_embed_dim: int, + timestep_input_dim: int, + ): + if class_embed_type is None and num_class_embeds is not None: + self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) + elif class_embed_type == "timestep": + self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) + elif class_embed_type == "identity": + self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) + elif class_embed_type == "projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" + ) + # The projection `class_embed_type` is the same as the timestep `class_embed_type` except + # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings + # 2. it projects from an arbitrary input dimension. + # + # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. + # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. + # As a result, `TimestepEmbedding` can be passed arbitrary vectors. + self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif class_embed_type == "simple_projection": + if projection_class_embeddings_input_dim is None: + raise ValueError( + "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" + ) + self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) + else: + self.class_embedding = None + + def _set_add_embedding( + self, + addition_embed_type: str, + addition_embed_type_num_heads: int, + addition_time_embed_dim: Optional[int], + flip_sin_to_cos: bool, + freq_shift: float, + cross_attention_dim: Optional[int], + encoder_hid_dim: Optional[int], + projection_class_embeddings_input_dim: Optional[int], + time_embed_dim: int, + ): + if addition_embed_type == "text": + if encoder_hid_dim is not None: + text_time_embedding_from_dim = encoder_hid_dim + else: + text_time_embedding_from_dim = cross_attention_dim + + self.add_embedding = TextTimeEmbedding( + text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads + ) + elif addition_embed_type == "text_image": + # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much + # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use + # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` + self.add_embedding = TextImageTimeEmbedding( + text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim + ) + elif addition_embed_type == "text_time": + self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) + self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) + elif addition_embed_type == "image": + # Kandinsky 2.2 + self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type == "image_hint": + # Kandinsky 2.2 ControlNet + self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) + elif addition_embed_type is not None: + raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") + + def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int): + if attention_type in ["gated", "gated-text-image"]: + positive_len = 768 + if isinstance(cross_attention_dim, int): + positive_len = cross_attention_dim + elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list): + positive_len = cross_attention_dim[0] + + feature_type = "text-only" if attention_type == "gated" else "text-image" + self.position_net = GLIGENTextBoundingboxProjection( + positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type + ) + + @property + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def set_default_attn_processor(self): + """ + Disables custom attention processors and sets the default attention implementation. + """ + if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnAddedKVProcessor() + elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): + processor = AttnProcessor() + else: + raise ValueError( + f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" + ) + + self.set_attn_processor(processor) + + def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"): + r""" + Enable sliced attention computation. + + When this option is enabled, the attention module splits the input tensor in slices to compute attention in + several steps. This is useful for saving some memory in exchange for a small decrease in speed. + + Args: + slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): + When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If + `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is + provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` + must be a multiple of `slice_size`. + """ + sliceable_head_dims = [] + + def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): + if hasattr(module, "set_attention_slice"): + sliceable_head_dims.append(module.sliceable_head_dim) + + for child in module.children(): + fn_recursive_retrieve_sliceable_dims(child) + + # retrieve number of attention layers + for module in self.children(): + fn_recursive_retrieve_sliceable_dims(module) + + num_sliceable_layers = len(sliceable_head_dims) + + if slice_size == "auto": + # half the attention head size is usually a good trade-off between + # speed and memory + slice_size = [dim // 2 for dim in sliceable_head_dims] + elif slice_size == "max": + # make smallest slice possible + slice_size = num_sliceable_layers * [1] + + slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size + + if len(slice_size) != len(sliceable_head_dims): + raise ValueError( + f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" + f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." + ) + + for i in range(len(slice_size)): + size = slice_size[i] + dim = sliceable_head_dims[i] + if size is not None and size > dim: + raise ValueError(f"size {size} has to be smaller or equal to {dim}.") + + # Recursively walk through all the children. + # Any children which exposes the set_attention_slice method + # gets the message + def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): + if hasattr(module, "set_attention_slice"): + module.set_attention_slice(slice_size.pop()) + + for child in module.children(): + fn_recursive_set_attention_slice(child, slice_size) + + reversed_slice_size = list(reversed(slice_size)) + for module in self.children(): + fn_recursive_set_attention_slice(module, reversed_slice_size) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, "gradient_checkpointing"): + module.gradient_checkpointing = value + + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. + + The suffixes after the scaling factors represent the stage blocks where they are being applied. + + Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that + are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. + + Args: + s1 (`float`): + Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to + mitigate the "oversmoothing effect" in the enhanced denoising process. + s2 (`float`): + Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to + mitigate the "oversmoothing effect" in the enhanced denoising process. + b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. + b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. + """ + for i, upsample_block in enumerate(self.up_blocks): + setattr(upsample_block, "s1", s1) + setattr(upsample_block, "s2", s2) + setattr(upsample_block, "b1", b1) + setattr(upsample_block, "b2", b2) + + def disable_freeu(self): + """Disables the FreeU mechanism.""" + freeu_keys = {"s1", "s2", "b1", "b2"} + for i, upsample_block in enumerate(self.up_blocks): + for k in freeu_keys: + if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: + setattr(upsample_block, k, None) + + def fuse_qkv_projections(self): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + """ + self.original_attn_processors = None + + for _, attn_processor in self.attn_processors.items(): + if "Added" in str(attn_processor.__class__.__name__): + raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") + + self.original_attn_processors = self.attn_processors + + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + def unfuse_qkv_projections(self): + """Disables the fused QKV projection if enabled. + + + + This API is 🧪 experimental. + + + + """ + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def unload_lora(self): + """Unloads LoRA weights.""" + deprecate( + "unload_lora", + "0.28.0", + "Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().", + ) + for module in self.modules(): + if hasattr(module, "set_lora_layer"): + module.set_lora_layer(None) + + def get_time_embed( + self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int] + ) -> Optional[torch.Tensor]: + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + # `Timesteps` does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + return t_emb + + def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]: + class_emb = None + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # there might be better ways to encapsulate this. + class_labels = class_labels.to(dtype=sample.dtype) + + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + return class_emb + + def get_aug_embed( + self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any] + ) -> Optional[torch.Tensor]: + aug_emb = None + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == "text_image": + # Kandinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + + image_embs = added_cond_kwargs.get("image_embeds") + text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == "text_time": + # SDXL - style + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == "image": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == "image_hint": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + hint = added_cond_kwargs.get("hint") + aug_emb = self.add_embedding(image_embs, hint) + return aug_emb + + def process_encoder_hidden_states( + self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any] + ) -> torch.Tensor: + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": + # Kadinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + image_embeds = self.encoder_hid_proj(image_embeds) + encoder_hidden_states = (encoder_hidden_states, image_embeds) + return encoder_hidden_states + + def forward( + self, + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + down_block_add_samples: Optional[Tuple[torch.Tensor]] = None, + mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None, + up_block_add_samples: Optional[Tuple[torch.Tensor]] = None, + ) -> Union[UNet2DConditionOutput, Tuple]: + r""" + The [`UNet2DConditionModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor with the following shape `(batch, channel, height, width)`. + timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. + encoder_hidden_states (`torch.FloatTensor`): + The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. + class_labels (`torch.Tensor`, *optional*, defaults to `None`): + Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. + timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): + Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed + through the `self.time_embedding` layer to obtain the timestep embeddings. + attention_mask (`torch.Tensor`, *optional*, defaults to `None`): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + added_cond_kwargs: (`dict`, *optional*): + A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that + are passed along to the UNet blocks. + down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): + A tuple of tensors that if specified are added to the residuals of down unet blocks. + mid_block_additional_residual: (`torch.Tensor`, *optional*): + A tensor that if specified is added to the residual of the middle unet block. + encoder_attention_mask (`torch.Tensor`): + A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If + `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, + which adds large negative values to the attention scores corresponding to "discard" tokens. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. + added_cond_kwargs: (`dict`, *optional*): + A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that + are passed along to the UNet blocks. + down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*): + additional residuals to be added to UNet long skip connections from down blocks to up blocks for + example from ControlNet side model(s) + mid_block_additional_residual (`torch.Tensor`, *optional*): + additional residual to be added to UNet mid block output, for example from ControlNet side model + down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): + additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) + + Returns: + [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise + a `tuple` is returned where the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2**self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + for dim in sample.shape[-2:]: + if dim % default_overall_up_factor != 0: + # Forward upsample size to force interpolation output size. + forward_upsample_size = True + break + + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) + if attention_mask is not None: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + + # 0. center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # 1. time + t_emb = self.get_time_embed(sample=sample, timestep=timestep) + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) + if class_emb is not None: + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + + aug_emb = self.get_aug_embed( + emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs + ) + if self.config.addition_embed_type == "image_hint": + aug_emb, hint = aug_emb + sample = torch.cat([sample, hint], dim=1) + + emb = emb + aug_emb if aug_emb is not None else emb + + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + + encoder_hidden_states = self.process_encoder_hidden_states( + encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs + ) + + # 2. pre-process + sample = self.conv_in(sample) + + # 2.5 GLIGEN position net + if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: + cross_attention_kwargs = cross_attention_kwargs.copy() + gligen_args = cross_attention_kwargs.pop("gligen") + cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} + + # 3. down + lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 + if USE_PEFT_BACKEND: + # weight the lora layers by setting `lora_scale` for each PEFT layer + scale_lora_layers(self, lora_scale) + + is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None + # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets + is_adapter = down_intrablock_additional_residuals is not None + # maintain backward compatibility for legacy usage, where + # T2I-Adapter and ControlNet both use down_block_additional_residuals arg + # but can only use one or the other + is_brushnet = ( + down_block_add_samples is not None + and mid_block_add_sample is not None + and up_block_add_samples is not None + ) + if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: + deprecate( + "T2I should not use down_block_additional_residuals", + "1.3.0", + "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ + and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ + for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", + standard_warn=False, + ) + down_intrablock_additional_residuals = down_block_additional_residuals + is_adapter = True + + down_block_res_samples = (sample,) + + if is_brushnet: + sample = sample + down_block_add_samples.pop(0) + + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + # For t2i-adapter CrossAttnDownBlock2D + additional_residuals = {} + if is_adapter and len(down_intrablock_additional_residuals) > 0: + additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) + + if is_brushnet and len(down_block_add_samples) > 0: + additional_residuals["down_block_add_samples"] = [ + down_block_add_samples.pop(0) + for _ in range(len(downsample_block.resnets) + (downsample_block.downsamplers is not None)) + ] + + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + **additional_residuals, + ) + else: + additional_residuals = {} + if is_brushnet and len(down_block_add_samples) > 0: + additional_residuals["down_block_add_samples"] = [ + down_block_add_samples.pop(0) + for _ in range(len(downsample_block.resnets) + (downsample_block.downsamplers is not None)) + ] + + sample, res_samples = downsample_block( + hidden_states=sample, temb=emb, scale=lora_scale, **additional_residuals + ) + if is_adapter and len(down_intrablock_additional_residuals) > 0: + sample += down_intrablock_additional_residuals.pop(0) + + down_block_res_samples += res_samples + + if is_controlnet: + new_down_block_res_samples = () + + for down_block_res_sample, down_block_additional_residual in zip( + down_block_res_samples, down_block_additional_residuals + ): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + + down_block_res_samples = new_down_block_res_samples + + # 4. mid + if self.mid_block is not None: + if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + else: + sample = self.mid_block(sample, emb) + + # To support T2I-Adapter-XL + if ( + is_adapter + and len(down_intrablock_additional_residuals) > 0 + and sample.shape == down_intrablock_additional_residuals[0].shape + ): + sample += down_intrablock_additional_residuals.pop(0) + + if is_controlnet: + sample = sample + mid_block_additional_residual + + if is_brushnet: + sample = sample + mid_block_add_sample + + # 5. up + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + additional_residuals = {} + if is_brushnet and len(up_block_add_samples) > 0: + additional_residuals["up_block_add_samples"] = [ + up_block_add_samples.pop(0) + for _ in range(len(upsample_block.resnets) + (upsample_block.upsamplers is not None)) + ] + + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + **additional_residuals, + ) + else: + additional_residuals = {} + if is_brushnet and len(up_block_add_samples) > 0: + additional_residuals["up_block_add_samples"] = [ + up_block_add_samples.pop(0) + for _ in range(len(upsample_block.resnets) + (upsample_block.upsamplers is not None)) + ] + + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + upsample_size=upsample_size, + scale=lora_scale, + **additional_residuals, + ) + + # 6. post-process + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + if USE_PEFT_BACKEND: + # remove `lora_scale` from each PEFT layer + unscale_lora_layers(self, lora_scale) + + if not return_dict: + return (sample,) + + return UNet2DConditionOutput(sample=sample) diff --git a/PowerPaint/powerpaint/pipelines/__init__.py b/PowerPaint/powerpaint/pipelines/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e6597f5ea9249463ee0de44a85dc9bd2af729b1b --- /dev/null +++ b/PowerPaint/powerpaint/pipelines/__init__.py @@ -0,0 +1,10 @@ +from .pipeline_PowerPaint import StableDiffusionInpaintPipeline +from .pipeline_PowerPaint_Brushnet_CA import StableDiffusionPowerPaintBrushNetPipeline +from .pipeline_PowerPaint_ControlNet import StableDiffusionControlNetInpaintPipeline + + +__all__ = [ + "StableDiffusionInpaintPipeline", + "StableDiffusionControlNetInpaintPipeline", + "StableDiffusionPowerPaintBrushNetPipeline", +] diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/__init__.cpython-311.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..583e13b442276b4112fbec990c9958ea5964771f Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/__init__.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/__init__.cpython-38.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0a125177abcdea8204e068751b6287a2accb1b4e Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/__init__.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint.cpython-311.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2da19bab4a241124f57c34857c0ca1dfb91c5371 Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint.cpython-38.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d31517d0e4bd24ef2fd74c07eb8de7a2f991126a Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_Brushnet_CA.cpython-311.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_Brushnet_CA.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31d40caa7d462e8520e18594da79c7c8a500c592 Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_Brushnet_CA.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_Brushnet_CA.cpython-38.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_Brushnet_CA.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18088c08d669e564c3f6972196c5e7c1370fc8bc Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_Brushnet_CA.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_ControlNet.cpython-311.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_ControlNet.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..02237f1455e43d3867beb8060b4f33625fbc1dd6 Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_ControlNet.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_ControlNet.cpython-38.pyc b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_ControlNet.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3dde7039657dd629267a7a581105136e65df7ec Binary files /dev/null and b/PowerPaint/powerpaint/pipelines/__pycache__/pipeline_PowerPaint_ControlNet.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint.py b/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint.py new file mode 100644 index 0000000000000000000000000000000000000000..b8f80e2038bf4667e45f9730c7ea4b1233330209 --- /dev/null +++ b/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint.py @@ -0,0 +1,1071 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import PIL +import torch +from packaging import version +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer + +from diffusers.configuration_utils import FrozenDict +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL, UNet2DConditionModel +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput +from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import deprecate, is_accelerate_available, is_accelerate_version, logging +from diffusers.utils.torch_utils import randn_tensor + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False): + """ + Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be + converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the + ``image`` and ``1`` for the ``mask``. + + The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be + binarized (``mask > 0.5``) and cast to ``torch.float32`` too. + + Args: + image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. + It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` + ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. + mask (_type_): The mask to apply to the image, i.e. regions to inpaint. + It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` + ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. + + + Raises: + ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask + should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. + TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not + (to the other way around). + + Returns: + tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 + dimensions: ``batch x channels x height x width``. + """ + + if image is None: + raise ValueError("`image` input cannot be undefined.") + + if mask is None: + raise ValueError("`mask_image` input cannot be undefined.") + + if isinstance(image, torch.Tensor): + if not isinstance(mask, torch.Tensor): + raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") + + # Batch single image + if image.ndim == 3: + assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" + image = image.unsqueeze(0) + + # Batch and add channel dim for single mask + if mask.ndim == 2: + mask = mask.unsqueeze(0).unsqueeze(0) + + # Batch single mask or add channel dim + if mask.ndim == 3: + # Single batched mask, no channel dim or single mask not batched but channel dim + if mask.shape[0] == 1: + mask = mask.unsqueeze(0) + + # Batched masks no channel dim + else: + mask = mask.unsqueeze(1) + + assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" + assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" + assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" + + # Check image is in [-1, 1] + if image.min() < -1 or image.max() > 1: + raise ValueError("Image should be in [-1, 1] range") + + # Check mask is in [0, 1] + if mask.min() < 0 or mask.max() > 1: + raise ValueError("Mask should be in [0, 1] range") + + # Binarize mask + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + + # Image as float32 + image = image.to(dtype=torch.float32) + elif isinstance(mask, torch.Tensor): + raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") + else: + # preprocess image + if isinstance(image, (PIL.Image.Image, np.ndarray)): + image = [image] + if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): + # resize all images w.r.t passed height an width + image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image] + image = [np.array(i.convert("RGB"))[None, :] for i in image] + image = np.concatenate(image, axis=0) + elif isinstance(image, list) and isinstance(image[0], np.ndarray): + image = np.concatenate([i[None, :] for i in image], axis=0) + + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + + # preprocess mask + if isinstance(mask, (PIL.Image.Image, np.ndarray)): + mask = [mask] + + if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): + mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] + mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) + mask = mask.astype(np.float32) / 255.0 + elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): + mask = np.concatenate([m[None, None, :] for m in mask], axis=0) + + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + + masked_image = image * (mask < 0.5) + + # n.b. ensure backwards compatibility as old function does not return image + if return_image: + return mask, masked_image, image + + return mask, masked_image + + +class StableDiffusionInpaintPipeline( + DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin +): + r""" + Pipeline for text-guided image inpainting using Stable Diffusion. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights + + Args: + vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet2DConditionModel`]): + A `UNet2DConditionModel` to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + about a model's potential harms. + feature_extractor ([`~transformers.CLIPImageProcessor`]): + A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. + """ + + _optional_components = ["safety_checker", "feature_extractor"] + + def __init__( + self, + vae: Union[AutoencoderKL, AsymmetricAutoencoderKL], + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + requires_safety_checker: bool = True, + ): + super().__init__() + + if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: + deprecation_message = ( + f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" + f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " + "to update the config accordingly as leaving `steps_offset` might led to incorrect results" + " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," + " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" + " file" + ) + deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config["steps_offset"] = 1 + scheduler._internal_dict = FrozenDict(new_config) + + if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: + deprecation_message = ( + f"The configuration file of this scheduler: {scheduler} has not set the configuration" + " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" + " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" + " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" + " Hub, it would be very nice if you could open a Pull request for the" + " `scheduler/scheduler_config.json` file" + ) + deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) + new_config = dict(scheduler.config) + new_config["skip_prk_steps"] = True + scheduler._internal_dict = FrozenDict(new_config) + + if safety_checker is None and requires_safety_checker: + logger.warning( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( + version.parse(unet.config._diffusers_version).base_version + ) < version.parse("0.9.0.dev0") + is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = ( + "The configuration file of the unet has set the default `sample_size` to smaller than" + " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" + " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" + " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" + " in the config might lead to incorrect results in future versions. If you have downloaded this" + " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" + " the `unet/config.json` file" + ) + deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) + new_config = dict(unet.config) + new_config["sample_size"] = 64 + unet._internal_dict = FrozenDict(new_config) + + # Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4 + if unet.config.in_channels != 9: + logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.") + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload + def enable_model_cpu_offload(self, gpu_id=0): + r""" + Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a + time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. + Memory savings are lower than using `enable_sequential_cpu_offload`, but performance is much better due to the + iterative execution of the `unet`. + """ + if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): + from accelerate import cpu_offload_with_hook + else: + raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") + + device = torch.device(f"cuda:{gpu_id}") + + if self.device.type != "cpu": + self.to("cpu", silence_dtype_warnings=True) + torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) + + hook = None + for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: + _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + + if self.safety_checker is not None: + _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) + + # We'll offload the last model manually. + self.final_offload_hook = hook + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt + def _encode_prompt( + self, + promptA, + promptB, + t, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_promptA=None, + negative_promptB=None, + t_nag=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + prompt = promptA + negative_prompt = negative_promptA + + if promptA is not None and isinstance(promptA, str): + batch_size = 1 + elif promptA is not None and isinstance(promptA, list): + batch_size = len(promptA) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + promptA = self.maybe_convert_prompt(promptA, self.tokenizer) + + text_inputsA = self.tokenizer( + promptA, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_inputsB = self.tokenizer( + promptB, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_idsA = text_inputsA.input_ids + text_input_idsB = text_inputsB.input_ids + untruncated_ids = self.tokenizer(promptA, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_idsA.shape[-1] and not torch.equal( + text_input_idsA, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputsA.attention_mask.to(device) + else: + attention_mask = None + + prompt_embedsA = self.text_encoder( + text_input_idsA.to(device), + attention_mask=attention_mask, + ) + prompt_embedsA = prompt_embedsA[0] + + prompt_embedsB = self.text_encoder( + text_input_idsB.to(device), + attention_mask=attention_mask, + ) + prompt_embedsB = prompt_embedsB[0] + prompt_embeds = prompt_embedsA * (t) + (1 - t) * prompt_embedsB + # print("prompt_embeds: ",prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokensA: List[str] + uncond_tokensB: List[str] + if negative_prompt is None: + uncond_tokensA = [""] * batch_size + uncond_tokensB = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokensA = [negative_promptA] + uncond_tokensB = [negative_promptB] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokensA = negative_promptA + uncond_tokensB = negative_promptB + + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokensA = self.maybe_convert_prompt(uncond_tokensA, self.tokenizer) + uncond_tokensB = self.maybe_convert_prompt(uncond_tokensB, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_inputA = self.tokenizer( + uncond_tokensA, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + uncond_inputB = self.tokenizer( + uncond_tokensB, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_inputA.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embedsA = self.text_encoder( + uncond_inputA.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embedsB = self.text_encoder( + uncond_inputB.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embedsA[0] * (t_nag) + (1 - t_nag) * negative_prompt_embedsB[0] + + # negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + # print("prompt_embeds: ",prompt_embeds) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + return prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (Ī·) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to Ī· in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + height, + width, + strength, + callback_steps, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + ): + if strength < 0 or strength > 1: + raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") + + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + image=None, + timestep=None, + is_strength_max=True, + return_noise=False, + return_image_latents=False, + ): + shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if (image is None or timestep is None) and not is_strength_max: + raise ValueError( + "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." + "However, either the image or the noise timestep has not been provided." + ) + + if return_image_latents or (latents is None and not is_strength_max): + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + # if strength is 1. then initialise the latents to noise, else initial to image + noise + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + # if pure noise then scale the initial latents by the Scheduler's init sigma + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + else: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + + outputs = (latents,) + + if return_noise: + outputs += (noise,) + + if return_image_latents: + outputs += (image_latents,) + + return outputs + + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [ + self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i]) + for i in range(image.shape[0]) + ] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) + + image_latents = self.vae.config.scaling_factor * image_latents + + return image_latents + + def prepare_mask_latents( + self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance + ): + # resize the mask to latents shape as we concatenate the mask to the latents + # we do that before converting to dtype to avoid breaking in case we're using cpu_offload + # and half precision + mask = torch.nn.functional.interpolate( + mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) + ) + mask = mask.to(device=device, dtype=dtype) + + masked_image = masked_image.to(device=device, dtype=dtype) + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + + # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = ( + torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + ) + + # aligning device to prevent device errors when concatenating it with the latent model input + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return mask, masked_image_latents + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + + return timesteps, num_inference_steps - t_start + + @torch.no_grad() + def __call__( + self, + promptA: Union[str, List[str]] = None, + promptB: Union[str, List[str]] = None, + image: Union[torch.FloatTensor, PIL.Image.Image] = None, + mask: Union[torch.FloatTensor, PIL.Image.Image] = None, + height: Optional[int] = None, + width: Optional[int] = None, + strength: float = 1.0, + tradoff: float = 1.0, + tradoff_nag: float = 1.0, + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + negative_promptA: Optional[Union[str, List[str]]] = None, + negative_promptB: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + task_class: Union[torch.Tensor, float, int] = None, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + image (`PIL.Image.Image`): + `Image` or tensor representing an image batch to be inpainted (which parts of the image to be masked + out with `mask_image` and repainted according to `prompt`). + mask_image (`PIL.Image.Image`): + `Image` or tensor representing an image batch to mask `image`. White pixels in the mask are repainted + while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel + (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the + expected shape would be `(B, H, W, 1)`. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 1.0): + Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a + starting point and more noise is added the higher the `strength`. The number of denoising steps depends + on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising + process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 + essentially ignores `image`. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. This parameter is modulated by `strength`. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (Ī·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + + Examples: + + ```py + >>> import PIL + >>> import requests + >>> import torch + >>> from io import BytesIO + + >>> from diffusers import StableDiffusionInpaintPipeline + + + >>> def download_image(url): + ... response = requests.get(url) + ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") + + + >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" + >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" + + >>> init_image = download_image(img_url).resize((512, 512)) + >>> mask_image = download_image(mask_url).resize((512, 512)) + + >>> pipe = StableDiffusionInpaintPipeline.from_pretrained( + ... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16 + ... ) + >>> pipe = pipe.to("cuda") + + >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench" + >>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] + ``` + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned where the first element is a list with the generated images and the + second element is a list of `bool`s indicating whether the corresponding generated image contains + "not-safe-for-work" (nsfw) content. + """ + # 0. Default height and width to unet + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + prompt = promptA + negative_prompt = negative_promptA + # 1. Check inputs + self.check_inputs( + prompt, + height, + width, + strength, + callback_steps, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + prompt_embeds = self._encode_prompt( + promptA, + promptB, + tradoff, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_promptA, + negative_promptB, + tradoff_nag, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + + # 4. set timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps, num_inference_steps = self.get_timesteps( + num_inference_steps=num_inference_steps, strength=strength, device=device + ) + # check that number of inference steps is not < 1 - as this doesn't make sense + if num_inference_steps < 1: + raise ValueError( + f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" + f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." + ) + # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise + is_strength_max = strength == 1.0 + + # 5. Preprocess mask and image + mask, masked_image, init_image = prepare_mask_and_masked_image(image, mask, height, width, return_image=True) + mask_condition = mask.clone() + + # 6. Prepare latent variables + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + + latents_outputs = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + image=init_image, + timestep=latent_timestep, + is_strength_max=is_strength_max, + return_noise=True, + return_image_latents=return_image_latents, + ) + + if return_image_latents: + latents, noise, image_latents = latents_outputs + else: + latents, noise = latents_outputs + + # 7. Prepare mask latent variables + mask, masked_image_latents = self.prepare_mask_latents( + mask, + masked_image, + batch_size * num_images_per_prompt, + height, + width, + prompt_embeds.dtype, + device, + generator, + do_classifier_free_guidance, + ) + + # 8. Check that sizes of mask, masked image and latents match + if num_channels_unet == 9: + # default case for runwayml/stable-diffusion-inpainting + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError( + f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" + f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" + f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" + f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" + " `pipeline.unet` or your `mask_image` or `image` input." + ) + elif num_channels_unet != 4: + raise ValueError( + f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." + ) + + # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 10. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + + # concat latents, mask, masked_image_latents in the channel dimension + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + + # predict the noise residual + if task_class is not None: + noise_pred = self.unet( + sample=latent_model_input, + timestep=t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=False, + task_class=task_class, + )[0] + else: + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if num_channels_unet == 4: + init_latents_proper = image_latents[:1] + init_mask = mask[:1] + + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise( + init_latents_proper, noise, torch.tensor([noise_timestep]) + ) + + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + if not output_type == "latent": + condition_kwargs = {} + if isinstance(self.vae, AsymmetricAutoencoderKL): + init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) + init_image_condition = init_image.clone() + init_image = self._encode_vae_image(init_image, generator=generator) + mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) + condition_kwargs = {"image": init_image_condition, "mask": mask_condition} + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, **condition_kwargs)[0] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload last model to CPU + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.final_offload_hook.offload() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) diff --git a/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint_Brushnet_CA.py b/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint_Brushnet_CA.py new file mode 100644 index 0000000000000000000000000000000000000000..110aa75d4810203745ae570661f51843a829204a --- /dev/null +++ b/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint_Brushnet_CA.py @@ -0,0 +1,1497 @@ +import inspect +from typing import Any, Callable, Dict, List, Optional, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection + +from diffusers.image_processor import PipelineImageInput, VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL +from diffusers.models.lora import adjust_lora_scale_text_encoder +from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + USE_PEFT_BACKEND, + deprecate, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor + +from ..models import BrushNetModel, UNet2DConditionModel +from ..utils import ImageProjection + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler + from diffusers.utils import load_image + import torch + import cv2 + import numpy as np + from PIL import Image + + base_model_path = "runwayml/stable-diffusion-v1-5" + brushnet_path = "ckpt_path" + + brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16) + pipe = StableDiffusionBrushNetPipeline.from_pretrained( + base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False + ) + + # speed up diffusion process with faster scheduler and memory optimization + pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) + # remove following line if xformers is not installed or when using Torch 2.0. + # pipe.enable_xformers_memory_efficient_attention() + # memory optimization. + pipe.enable_model_cpu_offload() + + image_path="examples/brushnet/src/test_image.jpg" + mask_path="examples/brushnet/src/test_mask.jpg" + caption="A cake on the table." + + init_image = cv2.imread(image_path) + mask_image = 1.*(cv2.imread(mask_path).sum(-1)>255)[:,:,np.newaxis] + init_image = init_image * (1-mask_image) + + init_image = Image.fromarray(init_image.astype(np.uint8)).convert("RGB") + mask_image = Image.fromarray(mask_image.astype(np.uint8).repeat(3,-1)*255).convert("RGB") + + generator = torch.Generator("cuda").manual_seed(1234) + + image = pipe( + caption, + init_image, + mask_image, + num_inference_steps=50, + generator=generator, + paintingnet_conditioning_scale=1.0 + ).images[0] + image.save("output.png") + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, + `timesteps` must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default + timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` + must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class StableDiffusionPowerPaintBrushNetPipeline( + DiffusionPipeline, + StableDiffusionMixin, + TextualInversionLoaderMixin, + LoraLoaderMixin, + IPAdapterMixin, + FromSingleFileMixin, +): + r""" + Pipeline for text-to-image generation using Stable Diffusion with BrushNet guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights + - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet2DConditionModel`]): + A `UNet2DConditionModel` to denoise the encoded image latents. + brushnet ([`BrushNetModel`]`): + Provides additional conditioning to the `unet` during the denoising process. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + about a model's potential harms. + feature_extractor ([`~transformers.CLIPImageProcessor`]): + A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. + """ + + model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" + _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] + _exclude_from_cpu_offload = ["safety_checker"] + _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_brushnet: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + brushnet: BrushNetModel, + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + image_encoder: CLIPVisionModelWithProjection = None, + requires_safety_checker: bool = True, + ): + super().__init__() + + if safety_checker is None and requires_safety_checker: + logger.warning( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_brushnet=text_encoder_brushnet, + tokenizer=tokenizer, + unet=unet, + brushnet=brushnet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + image_encoder=image_encoder, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt + def _encode_prompt( + self, + promptA, + promptB, + t, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_promptA=None, + negative_promptB=None, + t_nag=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + prompt = promptA + negative_prompt = negative_promptA + + if promptA is not None and isinstance(promptA, str): + batch_size = 1 + elif promptA is not None and isinstance(promptA, list): + batch_size = len(promptA) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + promptA = self.maybe_convert_prompt(promptA, self.tokenizer) + + text_inputsA = self.tokenizer( + promptA, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_inputsB = self.tokenizer( + promptB, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_idsA = text_inputsA.input_ids + text_input_idsB = text_inputsB.input_ids + untruncated_ids = self.tokenizer(promptA, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_idsA.shape[-1] and not torch.equal( + text_input_idsA, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if ( + hasattr(self.text_encoder_brushnet.config, "use_attention_mask") + and self.text_encoder_brushnet.config.use_attention_mask + ): + attention_mask = text_inputsA.attention_mask.to(device) + else: + attention_mask = None + + # print("text_input_idsA: ",text_input_idsA) + # print("text_input_idsB: ",text_input_idsB) + # print('t: ',t) + + prompt_embedsA = self.text_encoder_brushnet( + text_input_idsA.to(device), + attention_mask=attention_mask, + ) + prompt_embedsA = prompt_embedsA[0] + + prompt_embedsB = self.text_encoder_brushnet( + text_input_idsB.to(device), + attention_mask=attention_mask, + ) + prompt_embedsB = prompt_embedsB[0] + prompt_embeds = prompt_embedsA * (t) + (1 - t) * prompt_embedsB + # print("prompt_embeds: ",prompt_embeds) + + if self.text_encoder_brushnet is not None: + prompt_embeds_dtype = self.text_encoder_brushnet.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokensA: List[str] + uncond_tokensB: List[str] + if negative_prompt is None: + uncond_tokensA = [""] * batch_size + uncond_tokensB = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokensA = [negative_promptA] + uncond_tokensB = [negative_promptB] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokensA = negative_promptA + uncond_tokensB = negative_promptB + + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokensA = self.maybe_convert_prompt(uncond_tokensA, self.tokenizer) + uncond_tokensB = self.maybe_convert_prompt(uncond_tokensB, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_inputA = self.tokenizer( + uncond_tokensA, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + uncond_inputB = self.tokenizer( + uncond_tokensB, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if ( + hasattr(self.text_encoder_brushnet.config, "use_attention_mask") + and self.text_encoder_brushnet.config.use_attention_mask + ): + attention_mask = uncond_inputA.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embedsA = self.text_encoder_brushnet( + uncond_inputA.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embedsB = self.text_encoder_brushnet( + uncond_inputB.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embedsA[0] * (t_nag) + (1 - t_nag) * negative_prompt_embedsB[0] + + # negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + # print("prompt_embeds: ",prompt_embeds) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + return prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt + def encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + # print('1 ',prompt,negative_prompt) + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + # print('2 ',prompt,negative_prompt) + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + # print('3 ',prompt,negative_prompt) + if prompt_embeds is None: + # textual inversion: process multi-vector tokens if necessary + # print('4 ',prompt,negative_prompt) + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + # print('5 ',prompt,negative_prompt) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + # print(prompt, text_input_ids) + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder( + text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True + ) + # Access the `hidden_states` first, that contains a tuple of + # all the hidden states from the encoder layers. Then index into + # the tuple to access the hidden states from the desired layer. + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + # We also need to apply the final LayerNorm here to not mess with the + # representations. The `last_hidden_states` that we typically use for + # obtaining the final prompt representations passes through the LayerNorm + # layer. + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + # print("neg: ", uncond_input.input_ids) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + return prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder( + torch.zeros_like(image), output_hidden_states=True + ).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( + num_images_per_prompt, dim=0 + ) + return image_enc_hidden_states, uncond_image_enc_hidden_states + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + + return image_embeds, uncond_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds + def prepare_ip_adapter_image_embeds( + self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance + ): + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError( + f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." + ) + + image_embeds = [] + for single_ip_adapter_image, image_proj_layer in zip( + ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers + ): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + single_image_embeds, single_negative_image_embeds = self.encode_image( + single_ip_adapter_image, device, 1, output_hidden_state + ) + single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) + single_negative_image_embeds = torch.stack( + [single_negative_image_embeds] * num_images_per_prompt, dim=0 + ) + + if do_classifier_free_guidance: + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) + single_image_embeds = single_image_embeds.to(device) + + image_embeds.append(single_image_embeds) + else: + repeat_dims = [1] + image_embeds = [] + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) + single_image_embeds = single_image_embeds.repeat( + num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) + ) + single_negative_image_embeds = single_negative_image_embeds.repeat( + num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) + ) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) + else: + single_image_embeds = single_image_embeds.repeat( + num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) + ) + image_embeds.append(single_image_embeds) + + return image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents + def decode_latents(self, latents): + deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" + deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) + + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (Ī·) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to Ī· in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + image, + mask, + callback_steps, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + ip_adapter_image=None, + ip_adapter_image_embeds=None, + brushnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + callback_on_step_end_tensor_inputs=None, + ): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.brushnet, torch._dynamo.eval_frame.OptimizedModule + ) + if ( + isinstance(self.brushnet, BrushNetModel) + or is_compiled + and isinstance(self.brushnet._orig_mod, BrushNetModel) + ): + self.check_image(image, mask, prompt, prompt_embeds) + else: + assert False + + # Check `brushnet_conditioning_scale` + if ( + isinstance(self.brushnet, BrushNetModel) + or is_compiled + and isinstance(self.brushnet._orig_mod, BrushNetModel) + ): + if not isinstance(brushnet_conditioning_scale, float): + raise TypeError("For single brushnet: `brushnet_conditioning_scale` must be type `float`.") + else: + assert False + + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError( + "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." + ) + + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError( + f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" + ) + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError( + f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" + ) + + def check_image(self, image, mask, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + mask_is_pil = isinstance(mask, PIL.Image.Image) + mask_is_tensor = isinstance(mask, torch.Tensor) + mask_is_np = isinstance(mask, np.ndarray) + mask_is_pil_list = isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image) + mask_is_tensor_list = isinstance(mask, list) and isinstance(mask[0], torch.Tensor) + mask_is_np_list = isinstance(mask, list) and isinstance(mask[0], np.ndarray) + + if ( + not mask_is_pil + and not mask_is_tensor + and not mask_is_np + and not mask_is_pil_list + and not mask_is_tensor_list + and not mask_is_np_list + ): + raise TypeError( + f"mask must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(mask)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + def prepare_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image.to(device=device, dtype=dtype) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + noise = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = noise * self.scheduler.init_noise_sigma + return latents, noise + + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding + def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): + """ + See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 + + Args: + timesteps (`torch.Tensor`): + generate embedding vectors at these timesteps + embedding_dim (`int`, *optional*, defaults to 512): + dimension of the embeddings to generate + dtype: + data type of the generated embeddings + + Returns: + `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` + """ + assert len(w.shape) == 1 + w = w * 1000.0 + + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + promptA: Union[str, List[str]] = None, + promptB: Union[str, List[str]] = None, + promptU: Union[str, List[str]] = None, + tradoff: float = 1.0, + tradoff_nag: float = 1.0, + image: PipelineImageInput = None, + mask: PipelineImageInput = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + timesteps: List[int] = None, + guidance_scale: float = 7.5, + negative_promptA: Optional[Union[str, List[str]]] = None, + negative_promptB: Optional[Union[str, List[str]]] = None, + negative_promptU: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + brushnet_conditioning_scale: Union[float, List[float]] = 1.0, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + **kwargs, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The BrushNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.FloatTensor`, it is passed to BrushNet as is. `PIL.Image.Image` can also be + accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height + and/or width are passed, `image` is resized accordingly. If multiple BrushNets are specified in + `init`, images must be passed as a list such that each element of the list can be correctly batched for + input to a single BrushNet. When `prompt` is a list, and if a list of images is passed for a single BrushNet, + each will be paired with each prompt in the `prompt` list. This also applies to multiple BrushNets, + where a list of image lists can be passed to batch for each prompt and each BrushNet. + mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The BrushNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.FloatTensor`, it is passed to BrushNet as is. `PIL.Image.Image` can also be + accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height + and/or width are passed, `image` is resized accordingly. If multiple BrushNets are specified in + `init`, images must be passed as a list such that each element of the list can be correctly batched for + input to a single BrushNet. When `prompt` is a list, and if a list of images is passed for a single BrushNet, + each will be paired with each prompt in the `prompt` list. This also applies to multiple BrushNets, + where a list of image lists can be passed to batch for each prompt and each BrushNet. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (Ī·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. + ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): + Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. + Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding + if `do_classifier_free_guidance` is set to `True`. + If not provided, embeddings are computed from the `ip_adapter_image` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + brushnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the BrushNet are multiplied by `brushnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple BrushNets are specified in `init`, you can set + the corresponding scale as a list. + guess_mode (`bool`, *optional*, defaults to `False`): + The BrushNet encoder tries to recognize the content of the input image even if you remove all + prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the BrushNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the BrushNet stops applying. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned where the first element is a list with the generated images and the + second element is a list of `bool`s indicating whether the corresponding generated image contains + "not-safe-for-work" (nsfw) content. + """ + + callback = kwargs.pop("callback", None) + callback_steps = kwargs.pop("callback_steps", None) + + if callback is not None: + deprecate( + "callback", + "1.0.0", + "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + if callback_steps is not None: + deprecate( + "callback_steps", + "1.0.0", + "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + + brushnet = self.brushnet._orig_mod if is_compiled_module(self.brushnet) else self.brushnet + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + control_guidance_start, control_guidance_end = ( + [control_guidance_start], + [control_guidance_end], + ) + + # 1. Check inputs. Raise error if not correct + prompt = promptA + negative_prompt = negative_promptA + self.check_inputs( + prompt, + image, + mask, + callback_steps, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + ip_adapter_image, + ip_adapter_image_embeds, + brushnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + callback_on_step_end_tensor_inputs, + ) + + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + global_pool_conditions = ( + brushnet.config.global_pool_conditions + if isinstance(brushnet, BrushNetModel) + else brushnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + # 3. Encode input prompt + text_encoder_lora_scale = ( + self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None + ) + + prompt_embeds = self._encode_prompt( + promptA, + promptB, + tradoff, + device, + num_images_per_prompt, + self.do_classifier_free_guidance, + negative_promptA, + negative_promptB, + tradoff_nag, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + prompt_embedsU = None + negative_prompt_embedsU = None + prompt_embedsU = self.encode_prompt( + promptU, + device, + num_images_per_prompt, + self.do_classifier_free_guidance, + negative_promptU, + prompt_embeds=prompt_embedsU, + negative_prompt_embeds=negative_prompt_embedsU, + lora_scale=text_encoder_lora_scale, + ) + + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds( + ip_adapter_image, + ip_adapter_image_embeds, + device, + batch_size * num_images_per_prompt, + self.do_classifier_free_guidance, + ) + + # 4. Prepare image + if isinstance(brushnet, BrushNetModel): + image = self.prepare_image( + image=image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=brushnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + original_mask = self.prepare_image( + image=mask, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=brushnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + original_mask = (original_mask.sum(1)[:, None, :, :] < 0).to(image.dtype) + height, width = image.shape[-2:] + else: + assert False + + # 5. Prepare timesteps + timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + self._num_timesteps = len(timesteps) + + # 6. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents, noise = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 6.1 prepare condition latents + # mask_i = transforms.ToPILImage()(image[0:1,:,:,:].squeeze(0)) + # mask_i.save('_mask.png') + # print(brushnet.dtype) + conditioning_latents = ( + self.vae.encode(image.to(device=device, dtype=brushnet.dtype)).latent_dist.sample() + * self.vae.config.scaling_factor + ) + mask = torch.nn.functional.interpolate( + original_mask, size=(conditioning_latents.shape[-2], conditioning_latents.shape[-1]) + ) + conditioning_latents = torch.concat([conditioning_latents, mask], 1) + # image = self.vae.decode(conditioning_latents[:1,:4,:,:] / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] + # from torchvision import transforms + # mask_i = transforms.ToPILImage()(image[0:1,:,:,:].squeeze(0)/2+0.5) + # mask_i.save(str(timesteps[0]) +'_C.png') + + # 6.5 Optionally get Guidance Scale Embedding + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding( + guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim + ).to(device=device, dtype=latents.dtype) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7.1 Add image embeds for IP-Adapter + added_cond_kwargs = ( + {"image_embeds": image_embeds} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None + else None + ) + + # 7.2 Create tensor stating which brushnets to keep + brushnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + brushnet_keep.append(keeps[0] if isinstance(brushnet, BrushNetModel) else keeps) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + is_unet_compiled = is_compiled_module(self.unet) + is_brushnet_compiled = is_compiled_module(self.brushnet) + is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # Relevant thread: + # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 + if (is_unet_compiled and is_brushnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # brushnet(s) inference + if guess_mode and self.do_classifier_free_guidance: + # Infer BrushNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + brushnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + brushnet_prompt_embeds = prompt_embeds + + if isinstance(brushnet_keep[i], list): + cond_scale = [c * s for c, s in zip(brushnet_conditioning_scale, brushnet_keep[i])] + else: + brushnet_cond_scale = brushnet_conditioning_scale + if isinstance(brushnet_cond_scale, list): + brushnet_cond_scale = brushnet_cond_scale[0] + cond_scale = brushnet_cond_scale * brushnet_keep[i] + + down_block_res_samples, mid_block_res_sample, up_block_res_samples = self.brushnet( + control_model_input, + t, + encoder_hidden_states=brushnet_prompt_embeds, + brushnet_cond=conditioning_latents, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + return_dict=False, + ) + + if guess_mode and self.do_classifier_free_guidance: + # Inferred BrushNet only for the conditional batch. + # To apply the output of BrushNet to both the unconditional and conditional batches, + # add 0 to the unconditional batch to keep it unchanged. + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + up_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in up_block_res_samples] + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embedsU, + timestep_cond=timestep_cond, + cross_attention_kwargs=self.cross_attention_kwargs, + down_block_add_samples=down_block_res_samples, + mid_block_add_sample=mid_block_res_sample, + up_block_add_samples=up_block_res_samples, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + # If we do sequential model offloading, let's offload unet and brushnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.brushnet.to("cpu") + torch.cuda.empty_cache() + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ + 0 + ] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) diff --git a/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint_ControlNet.py b/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint_ControlNet.py new file mode 100644 index 0000000000000000000000000000000000000000..f0d9cb984cbfa48401007054521e2d61c8aa7d1d --- /dev/null +++ b/PowerPaint/powerpaint/pipelines/pipeline_PowerPaint_ControlNet.py @@ -0,0 +1,1771 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ + +import inspect +import warnings +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer + +from diffusers import AsymmetricAutoencoderKL +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel +from diffusers.pipelines.controlnet import MultiControlNetModel +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput +from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + is_accelerate_available, + is_accelerate_version, + logging, + replace_example_docstring, +) +from diffusers.utils.torch_utils import is_compiled_module, randn_tensor + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> # !pip install transformers accelerate + >>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler + >>> from diffusers.utils import load_image + >>> import numpy as np + >>> import torch + + >>> init_image = load_image( + ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png" + ... ) + >>> init_image = init_image.resize((512, 512)) + + >>> generator = torch.Generator(device="cpu").manual_seed(1) + + >>> mask_image = load_image( + ... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png" + ... ) + >>> mask_image = mask_image.resize((512, 512)) + + + >>> def make_inpaint_condition(image, image_mask): + ... image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 + ... image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 + + ... assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" + ... image[image_mask > 0.5] = -1.0 # set as masked pixel + ... image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) + ... image = torch.from_numpy(image) + ... return image + + + >>> control_image = make_inpaint_condition(init_image, mask_image) + + >>> controlnet = ControlNetModel.from_pretrained( + ... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16 + ... ) + >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( + ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 + ... ) + + >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) + >>> pipe.enable_model_cpu_offload() + + >>> # generate image + >>> image = pipe( + ... "a handsome man with ray-ban sunglasses", + ... num_inference_steps=20, + ... generator=generator, + ... eta=1.0, + ... image=init_image, + ... mask_image=mask_image, + ... control_image=control_image, + ... ).images[0] + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image +def prepare_mask_and_masked_image(image, mask, height, width, return_image=False): + """ + Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be + converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the + ``image`` and ``1`` for the ``mask``. + + The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be + binarized (``mask > 0.5``) and cast to ``torch.float32`` too. + + Args: + image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. + It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` + ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. + mask (_type_): The mask to apply to the image, i.e. regions to inpaint. + It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` + ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. + + + Raises: + ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask + should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. + TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not + (to the other way around). + + Returns: + tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 + dimensions: ``batch x channels x height x width``. + """ + + if image is None: + raise ValueError("`image` input cannot be undefined.") + + if mask is None: + raise ValueError("`mask_image` input cannot be undefined.") + + if isinstance(image, torch.Tensor): + if not isinstance(mask, torch.Tensor): + raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") + + # Batch single image + if image.ndim == 3: + assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" + image = image.unsqueeze(0) + + # Batch and add channel dim for single mask + if mask.ndim == 2: + mask = mask.unsqueeze(0).unsqueeze(0) + + # Batch single mask or add channel dim + if mask.ndim == 3: + # Single batched mask, no channel dim or single mask not batched but channel dim + if mask.shape[0] == 1: + mask = mask.unsqueeze(0) + + # Batched masks no channel dim + else: + mask = mask.unsqueeze(1) + + assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" + assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" + assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" + + # Check image is in [-1, 1] + if image.min() < -1 or image.max() > 1: + raise ValueError("Image should be in [-1, 1] range") + + # Check mask is in [0, 1] + if mask.min() < 0 or mask.max() > 1: + raise ValueError("Mask should be in [0, 1] range") + + # Binarize mask + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + + # Image as float32 + image = image.to(dtype=torch.float32) + elif isinstance(mask, torch.Tensor): + raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") + else: + # preprocess image + if isinstance(image, (PIL.Image.Image, np.ndarray)): + image = [image] + if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): + # resize all images w.r.t passed height an width + image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image] + image = [np.array(i.convert("RGB"))[None, :] for i in image] + image = np.concatenate(image, axis=0) + elif isinstance(image, list) and isinstance(image[0], np.ndarray): + image = np.concatenate([i[None, :] for i in image], axis=0) + + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + + # preprocess mask + if isinstance(mask, (PIL.Image.Image, np.ndarray)): + mask = [mask] + + if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): + mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] + mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) + mask = mask.astype(np.float32) / 255.0 + elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): + mask = np.concatenate([m[None, None, :] for m in mask], axis=0) + + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + + masked_image = image * (mask < 0.5) + + # n.b. ensure backwards compatibility as old function does not return image + if return_image: + return mask, masked_image, image + + return mask, masked_image + + +class StableDiffusionControlNetInpaintPipeline( + DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin +): + r""" + Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + In addition the pipeline inherits the following loading methods: + - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] + + + + This pipeline can be used both with checkpoints that have been specifically fine-tuned for inpainting, such as + [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting) + as well as default text-to-image stable diffusion checkpoints, such as + [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). + Default text-to-image stable diffusion checkpoints might be preferable for controlnets that have been fine-tuned on + those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint). + + + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder. Stable Diffusion uses the text portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. + controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): + Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets + as a list, the outputs from each ControlNet are added together to create one combined additional + conditioning. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. + feature_extractor ([`CLIPImageProcessor`]): + Model that extracts features from generated images to be used as inputs for the `safety_checker`. + """ + + _optional_components = ["safety_checker", "feature_extractor"] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + requires_safety_checker: bool = True, + ): + super().__init__() + + if safety_checker is None and requires_safety_checker: + logger.warning( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def enable_model_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared + to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` + method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with + `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. + """ + if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): + from accelerate import cpu_offload_with_hook + else: + raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") + + device = torch.device(f"cuda:{gpu_id}") + + hook = None + for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: + _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + + if self.safety_checker is not None: + # the safety checker can offload the vae again + _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) + + # control net hook has be manually offloaded as it alternates with unet + cpu_offload_with_hook(self.controlnet, device) + + # We'll offload the last model manually. + self.final_offload_hook = hook + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt + def _encode_prompt( + self, + promptA, + promptB, + t, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_promptA=None, + negative_promptB=None, + t_nag=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + prompt = promptA + negative_prompt = negative_promptA + + if promptA is not None and isinstance(promptA, str): + batch_size = 1 + elif promptA is not None and isinstance(promptA, list): + batch_size = len(promptA) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + promptA = self.maybe_convert_prompt(promptA, self.tokenizer) + + text_inputsA = self.tokenizer( + promptA, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_inputsB = self.tokenizer( + promptB, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_idsA = text_inputsA.input_ids + text_input_idsB = text_inputsB.input_ids + untruncated_ids = self.tokenizer(promptA, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_idsA.shape[-1] and not torch.equal( + text_input_idsA, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputsA.attention_mask.to(device) + else: + attention_mask = None + + # print("text_input_idsA: ",text_input_idsA) + # print("text_input_idsB: ",text_input_idsB) + # print('t: ',t) + + prompt_embedsA = self.text_encoder( + text_input_idsA.to(device), + attention_mask=attention_mask, + ) + prompt_embedsA = prompt_embedsA[0] + + prompt_embedsB = self.text_encoder( + text_input_idsB.to(device), + attention_mask=attention_mask, + ) + prompt_embedsB = prompt_embedsB[0] + prompt_embeds = prompt_embedsA * (t) + (1 - t) * prompt_embedsB + # print("prompt_embeds: ",prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokensA: List[str] + uncond_tokensB: List[str] + if negative_prompt is None: + uncond_tokensA = [""] * batch_size + uncond_tokensB = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokensA = [negative_promptA] + uncond_tokensB = [negative_promptB] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokensA = negative_promptA + uncond_tokensB = negative_promptB + + # textual inversion: procecss multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokensA = self.maybe_convert_prompt(uncond_tokensA, self.tokenizer) + uncond_tokensB = self.maybe_convert_prompt(uncond_tokensB, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_inputA = self.tokenizer( + uncond_tokensA, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + uncond_inputB = self.tokenizer( + uncond_tokensB, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_inputA.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embedsA = self.text_encoder( + uncond_inputA.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embedsB = self.text_encoder( + uncond_inputB.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embedsA[0] * (t_nag) + (1 - t_nag) * negative_prompt_embedsB[0] + + # negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + # print("prompt_embeds: ",prompt_embeds) + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + return prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents + def decode_latents(self, latents): + warnings.warn( + "The decode_latents method is deprecated and will be removed in a future version. Please" + " use VaeImageProcessor instead", + FutureWarning, + ) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (Ī·) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to Ī· in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + + return timesteps, num_inference_steps - t_start + + def check_inputs( + self, + prompt, + image, + height, + width, + callback_steps, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + # `prompt` needs more sophisticated handling when there are multiple + # conditionings. + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning( + f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" + " prompts. The conditionings will be fixed across the prompts." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + self.check_image(image, prompt, prompt_embeds) + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if not isinstance(image, list): + raise TypeError("For multiple controlnets: `image` must be type `list`") + + # When `image` is a nested list: + # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) + elif any(isinstance(i, list) for i in image): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif len(image) != len(self.controlnet.nets): + raise ValueError( + f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." + ) + + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if isinstance(controlnet_conditioning_scale, list): + if any(isinstance(i, list) for i in controlnet_conditioning_scale): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( + self.controlnet.nets + ): + raise ValueError( + "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" + " the same length as the number of controlnets" + ) + else: + assert False + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError( + f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image + def prepare_control_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + image=None, + timestep=None, + is_strength_max=True, + return_noise=False, + return_image_latents=False, + ): + shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if (image is None or timestep is None) and not is_strength_max: + raise ValueError( + "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." + "However, either the image or the noise timestep has not been provided." + ) + + if return_image_latents or (latents is None and not is_strength_max): + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + # if strength is 1. then initialise the latents to noise, else initial to image + noise + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + # if pure noise then scale the initial latents by the Scheduler's init sigma + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + else: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + + outputs = (latents,) + + if return_noise: + outputs += (noise,) + + if return_image_latents: + outputs += (image_latents,) + + return outputs + + def _default_height_width(self, height, width, image): + # NOTE: It is possible that a list of images have different + # dimensions for each image, so just checking the first image + # is not _exactly_ correct, but it is simple. + while isinstance(image, list): + image = image[0] + + if height is None: + if isinstance(image, PIL.Image.Image): + height = image.height + elif isinstance(image, torch.Tensor): + height = image.shape[2] + + height = (height // 8) * 8 # round down to nearest multiple of 8 + + if width is None: + if isinstance(image, PIL.Image.Image): + width = image.width + elif isinstance(image, torch.Tensor): + width = image.shape[3] + + width = (width // 8) * 8 # round down to nearest multiple of 8 + + return height, width + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents + def prepare_mask_latents( + self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance + ): + # resize the mask to latents shape as we concatenate the mask to the latents + # we do that before converting to dtype to avoid breaking in case we're using cpu_offload + # and half precision + mask = torch.nn.functional.interpolate( + mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) + ) + mask = mask.to(device=device, dtype=dtype) + + masked_image = masked_image.to(device=device, dtype=dtype) + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + + # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + masked_image_latents = ( + torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + ) + + # aligning device to prevent device errors when concatenating it with the latent model input + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + return mask, masked_image_latents + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [ + self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i]) + for i in range(image.shape[0]) + ] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) + + image_latents = self.vae.config.scaling_factor * image_latents + + return image_latents + + @torch.no_grad() + def predict_woControl( + self, + promptA: Union[str, List[str]] = None, + promptB: Union[str, List[str]] = None, + image: Union[torch.FloatTensor, PIL.Image.Image] = None, + mask: Union[torch.FloatTensor, PIL.Image.Image] = None, + height: Optional[int] = None, + width: Optional[int] = None, + strength: float = 1.0, + tradoff: float = 1.0, + tradoff_nag: float = 1.0, + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + negative_promptA: Optional[Union[str, List[str]]] = None, + negative_promptB: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + task_class: Union[torch.Tensor, float, int] = None, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + image (`PIL.Image.Image`): + `Image` or tensor representing an image batch to be inpainted (which parts of the image to be masked + out with `mask_image` and repainted according to `prompt`). + mask_image (`PIL.Image.Image`): + `Image` or tensor representing an image batch to mask `image`. White pixels in the mask are repainted + while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel + (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the + expected shape would be `(B, H, W, 1)`. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 1.0): + Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a + starting point and more noise is added the higher the `strength`. The number of denoising steps depends + on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising + process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 + essentially ignores `image`. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. This parameter is modulated by `strength`. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (Ī·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + + Examples: + + ```py + >>> import PIL + >>> import requests + >>> import torch + >>> from io import BytesIO + + >>> from diffusers import StableDiffusionInpaintPipeline + + + >>> def download_image(url): + ... response = requests.get(url) + ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") + + + >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" + >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" + + >>> init_image = download_image(img_url).resize((512, 512)) + >>> mask_image = download_image(mask_url).resize((512, 512)) + + >>> pipe = StableDiffusionInpaintPipeline.from_pretrained( + ... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16 + ... ) + >>> pipe = pipe.to("cuda") + + >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench" + >>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] + ``` + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned where the first element is a list with the generated images and the + second element is a list of `bool`s indicating whether the corresponding generated image contains + "not-safe-for-work" (nsfw) content. + """ + # 0. Default height and width to unet + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + prompt = promptA + negative_prompt = negative_promptA + # 1. Check inputs + self.check_inputs( + prompt, + height, + width, + strength, + callback_steps, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + prompt_embeds = self._encode_prompt( + promptA, + promptB, + tradoff, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_promptA, + negative_promptB, + tradoff_nag, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + + # 4. set timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps, num_inference_steps = self.get_timesteps( + num_inference_steps=num_inference_steps, strength=strength, device=device + ) + # check that number of inference steps is not < 1 - as this doesn't make sense + if num_inference_steps < 1: + raise ValueError( + f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" + f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." + ) + # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise + is_strength_max = strength == 1.0 + + # 5. Preprocess mask and image + mask, masked_image, init_image = prepare_mask_and_masked_image(image, mask, height, width, return_image=True) + mask_condition = mask.clone() + + # 6. Prepare latent variables + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + + latents_outputs = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + image=init_image, + timestep=latent_timestep, + is_strength_max=is_strength_max, + return_noise=True, + return_image_latents=return_image_latents, + ) + + if return_image_latents: + latents, noise, image_latents = latents_outputs + else: + latents, noise = latents_outputs + + # 7. Prepare mask latent variables + mask, masked_image_latents = self.prepare_mask_latents( + mask, + masked_image, + batch_size * num_images_per_prompt, + height, + width, + prompt_embeds.dtype, + device, + generator, + do_classifier_free_guidance, + ) + + # 8. Check that sizes of mask, masked image and latents match + if num_channels_unet == 9: + # default case for runwayml/stable-diffusion-inpainting + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: + raise ValueError( + f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" + f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" + f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" + f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" + " `pipeline.unet` or your `mask_image` or `image` input." + ) + elif num_channels_unet != 4: + raise ValueError( + f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." + ) + + # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 10. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + + # concat latents, mask, masked_image_latents in the channel dimension + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + + # predict the noise residual + if task_class is not None: + noise_pred = self.unet( + sample=latent_model_input, + timestep=t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=False, + task_class=task_class, + )[0] + else: + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if num_channels_unet == 4: + init_latents_proper = image_latents[:1] + init_mask = mask[:1] + + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise( + init_latents_proper, noise, torch.tensor([noise_timestep]) + ) + + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + if not output_type == "latent": + condition_kwargs = {} + if isinstance(self.vae, AsymmetricAutoencoderKL): + init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) + init_image_condition = init_image.clone() + init_image = self._encode_vae_image(init_image, generator=generator) + mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) + condition_kwargs = {"image": init_image_condition, "mask": mask_condition} + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, **condition_kwargs)[0] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload last model to CPU + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.final_offload_hook.offload() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + promptA: Union[str, List[str]] = None, + promptB: Union[str, List[str]] = None, + image: Union[torch.Tensor, PIL.Image.Image] = None, + mask: Union[torch.Tensor, PIL.Image.Image] = None, + control_image: Union[ + torch.FloatTensor, + PIL.Image.Image, + np.ndarray, + List[torch.FloatTensor], + List[PIL.Image.Image], + List[np.ndarray], + ] = None, + height: Optional[int] = None, + width: Optional[int] = None, + strength: float = 1.0, + tradoff: float = 1.0, + tradoff_nag: float = 1.0, + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + negative_promptA: Optional[Union[str, List[str]]] = None, + negative_promptB: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 0.5, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, + `List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`): + The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If + the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can + also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If + height and/or width are passed, `image` is resized according to them. If multiple ControlNets are + specified in init, images must be passed as a list such that each element of the list can be correctly + batched for input to a single controlnet. + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 1.): + Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be + between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the + `strength`. The number of denoising steps depends on the amount of noise initially added. When + `strength` is 1, added noise will be maximum and the denoising process will run for the full number of + iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked + portion of the reference `image`. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 7.5): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (Ī·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that will be called every `callback_steps` steps during inference. The function will be + called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function will be called. If not specified, the callback will be + called at every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5): + The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original unet. If multiple ControlNets are specified in init, you can set the + corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting + than for [`~StableDiffusionControlNetPipeline.__call__`]. + guess_mode (`bool`, *optional*, defaults to `False`): + In this mode, the ControlNet encoder will try best to recognize the content of the input image even if + you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the controlnet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the controlnet stops applying. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. + When returning a tuple, the first element is a list with the generated images, and the second element is a + list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" + (nsfw) content, according to the `safety_checker`. + """ + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # 0. Default height and width to unet + height, width = self._default_height_width(height, width, image) + + prompt = promptA + negative_prompt = negative_promptA + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = ( + mult * [control_guidance_start], + mult * [control_guidance_end], + ) + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + control_image, + height, + width, + callback_steps, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + ) + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + + global_pool_conditions = ( + controlnet.config.global_pool_conditions + if isinstance(controlnet, ControlNetModel) + else controlnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + # 3. Encode input prompt + text_encoder_lora_scale = ( + cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None + ) + prompt_embeds = self._encode_prompt( + promptA, + promptB, + tradoff, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_promptA, + negative_promptB, + tradoff_nag, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + ) + + # 4. Prepare image + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image( + image=control_image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=do_classifier_free_guidance, + guess_mode=guess_mode, + ) + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + + for control_image_ in control_image: + control_image_ = self.prepare_control_image( + image=control_image_, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=do_classifier_free_guidance, + guess_mode=guess_mode, + ) + + control_images.append(control_image_) + + control_image = control_images + else: + assert False + + # 4. Preprocess mask and image - resizes image and mask w.r.t height and width + mask, masked_image, init_image = prepare_mask_and_masked_image(image, mask, height, width, return_image=True) + + # 5. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps, num_inference_steps = self.get_timesteps( + num_inference_steps=num_inference_steps, strength=strength, device=device + ) + # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise + is_strength_max = strength == 1.0 + + # 6. Prepare latent variables + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + latents_outputs = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + image=init_image, + timestep=latent_timestep, + is_strength_max=is_strength_max, + return_noise=True, + return_image_latents=return_image_latents, + ) + + if return_image_latents: + latents, noise, image_latents = latents_outputs + else: + latents, noise = latents_outputs + + # 7. Prepare mask latent variables + mask, masked_image_latents = self.prepare_mask_latents( + mask, + masked_image, + batch_size * num_images_per_prompt, + height, + width, + prompt_embeds.dtype, + device, + generator, + do_classifier_free_guidance, + ) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7.1 Create tensor stating which controlnets to keep + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # controlnet(s) inference + if guess_mode and do_classifier_free_guidance: + # Infer ControlNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + down_block_res_samples, mid_block_res_sample = self.controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=control_image, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + return_dict=False, + ) + + if guess_mode and do_classifier_free_guidance: + # Inferred ControlNet only for the conditional batch. + # To apply the output of ControlNet to both the unconditional and conditional batches, + # add 0 to the unconditional batch to keep it unchanged. + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + + # predict the noise residual + if num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if num_channels_unet == 4: + init_latents_proper = image_latents[:1] + init_mask = mask[:1] + + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise( + init_latents_proper, noise, torch.tensor([noise_timestep]) + ) + + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + # If we do sequential model offloading, let's offload unet and controlnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.controlnet.to("cpu") + torch.cuda.empty_cache() + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload last model to CPU + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.final_offload_hook.offload() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) diff --git a/PowerPaint/powerpaint/utils/__init__.py b/PowerPaint/powerpaint/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ae8f477252713258907c7a9c6db9d279d6657f90 --- /dev/null +++ b/PowerPaint/powerpaint/utils/__init__.py @@ -0,0 +1,4 @@ +from .utils import ImageProjection, TokenizerWrapper + + +__all__ = ["TokenizerWrapper", "ImageProjection"] diff --git a/PowerPaint/powerpaint/utils/__pycache__/__init__.cpython-311.pyc b/PowerPaint/powerpaint/utils/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d10fdda8a8c62ecd7065d2c75750f8558ee43956 Binary files /dev/null and b/PowerPaint/powerpaint/utils/__pycache__/__init__.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/utils/__pycache__/__init__.cpython-38.pyc b/PowerPaint/powerpaint/utils/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b9cf95d162012df00489b230c16bad279af52891 Binary files /dev/null and b/PowerPaint/powerpaint/utils/__pycache__/__init__.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/utils/__pycache__/utils.cpython-311.pyc b/PowerPaint/powerpaint/utils/__pycache__/utils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ce3905dcad4348dcedb8b76f98001486b3865dd Binary files /dev/null and b/PowerPaint/powerpaint/utils/__pycache__/utils.cpython-311.pyc differ diff --git a/PowerPaint/powerpaint/utils/__pycache__/utils.cpython-38.pyc b/PowerPaint/powerpaint/utils/__pycache__/utils.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..edd984d8c5781019db318e1ed9e0c6434dfa398d Binary files /dev/null and b/PowerPaint/powerpaint/utils/__pycache__/utils.cpython-38.pyc differ diff --git a/PowerPaint/powerpaint/utils/utils.py b/PowerPaint/powerpaint/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..c49a868fd056a40e5f25ef11f3861e439f2ed682 --- /dev/null +++ b/PowerPaint/powerpaint/utils/utils.py @@ -0,0 +1,553 @@ +import copy +import os +import random +from logging import WARNING +from typing import Any, List, Optional, Union + +import torch +import torch.nn as nn +import transformers + +# from mmagic.utils import try_import +from mmengine import print_log + + +class TokenizerWrapper: + """Tokenizer wrapper for CLIPTokenizer. Only support CLIPTokenizer + currently. This wrapper is modified from https://github.com/huggingface/dif + fusers/blob/e51f19aee82c8dd874b715a09dbc521d88835d68/src/diffusers/loaders. + py#L358 # noqa. + + Args: + from_pretrained (Union[str, os.PathLike], optional): The *model id* + of a pretrained model or a path to a *directory* containing + model weights and config. Defaults to None. + from_config (Union[str, os.PathLike], optional): The *model id* + of a pretrained model or a path to a *directory* containing + model weights and config. Defaults to None. + + *args, **kwargs: If `from_pretrained` is passed, *args and **kwargs + will be passed to `from_pretrained` function. Otherwise, *args + and **kwargs will be used to initialize the model by + `self._module_cls(*args, **kwargs)`. + """ + + def __init__( + self, + from_pretrained: Optional[Union[str, os.PathLike]] = None, + from_config: Optional[Union[str, os.PathLike]] = None, + *args, + **kwargs, + ): + # transformers = try_import("transformers") + module_cls = transformers.CLIPTokenizer + + assert not (from_pretrained and from_config), ( + "'from_pretrained' and 'from_config' should not be passed " "at the same time." + ) + + if from_config: + print_log( + "Tokenizers from Huggingface transformers do not support " + "'from_config'. Will call 'from_pretrained' instead " + "with the same argument.", + "current", + WARNING, + ) + from_pretrained = from_config + + if from_pretrained: + self.wrapped = module_cls.from_pretrained(from_pretrained, *args, **kwargs) + else: + self.wrapper = module_cls(*args, **kwargs) + + self._from_pretrained = from_pretrained + self.token_map = {} + + def __getattr__(self, name: str) -> Any: + if name == "wrapped": + return super().__getattr__("wrapped") + + try: + return getattr(self.wrapped, name) + except AttributeError: + try: + return super().__getattr__(name) + except AttributeError: + raise AttributeError( + "'name' cannot be found in both " + f"'{self.__class__.__name__}' and " + f"'{self.__class__.__name__}.tokenizer'." + ) + + def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs): + """Attempt to add tokens to the tokenizer. + + Args: + tokens (Union[str, List[str]]): The tokens to be added. + """ + num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs) + assert num_added_tokens != 0, ( + f"The tokenizer already contains the token {tokens}. Please pass " + "a different `placeholder_token` that is not already in the " + "tokenizer." + ) + + def get_token_info(self, token: str) -> dict: + """Get the information of a token, including its start and end index in + the current tokenizer. + + Args: + token (str): The token to be queried. + + Returns: + dict: The information of the token, including its start and end + index in current tokenizer. + """ + token_ids = self.__call__(token).input_ids + start, end = token_ids[1], token_ids[-2] + 1 + return {"name": token, "start": start, "end": end} + + def add_placeholder_token(self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs): + """Add placeholder tokens to the tokenizer. + + Args: + placeholder_token (str): The placeholder token to be added. + num_vec_per_token (int, optional): The number of vectors of + the added placeholder token. + *args, **kwargs: The arguments for `self.wrapped.add_tokens`. + """ + output = [] + if num_vec_per_token == 1: + self.try_adding_tokens(placeholder_token, *args, **kwargs) + output.append(placeholder_token) + else: + output = [] + for i in range(num_vec_per_token): + ith_token = placeholder_token + f"_{i}" + self.try_adding_tokens(ith_token, *args, **kwargs) + output.append(ith_token) + + for token in self.token_map: + if token in placeholder_token: + raise ValueError( + f"The tokenizer already has placeholder token {token} " + f"that can get confused with {placeholder_token} " + "keep placeholder tokens independent" + ) + self.token_map[placeholder_token] = output + + def replace_placeholder_tokens_in_text( + self, text: Union[str, List[str]], vector_shuffle: bool = False, prop_tokens_to_load: float = 1.0 + ) -> Union[str, List[str]]: + """Replace the keywords in text with placeholder tokens. This function + will be called in `self.__call__` and `self.encode`. + + Args: + text (Union[str, List[str]]): The text to be processed. + vector_shuffle (bool, optional): Whether to shuffle the vectors. + Defaults to False. + prop_tokens_to_load (float, optional): The proportion of tokens to + be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0. + + Returns: + Union[str, List[str]]: The processed text. + """ + if isinstance(text, list): + output = [] + for i in range(len(text)): + output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle)) + return output + + for placeholder_token in self.token_map: + if placeholder_token in text: + tokens = self.token_map[placeholder_token] + tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)] + if vector_shuffle: + tokens = copy.copy(tokens) + random.shuffle(tokens) + text = text.replace(placeholder_token, " ".join(tokens)) + return text + + def replace_text_with_placeholder_tokens(self, text: Union[str, List[str]]) -> Union[str, List[str]]: + """Replace the placeholder tokens in text with the original keywords. + This function will be called in `self.decode`. + + Args: + text (Union[str, List[str]]): The text to be processed. + + Returns: + Union[str, List[str]]: The processed text. + """ + if isinstance(text, list): + output = [] + for i in range(len(text)): + output.append(self.replace_text_with_placeholder_tokens(text[i])) + return output + + for placeholder_token, tokens in self.token_map.items(): + merged_tokens = " ".join(tokens) + if merged_tokens in text: + text = text.replace(merged_tokens, placeholder_token) + return text + + def __call__( + self, + text: Union[str, List[str]], + *args, + vector_shuffle: bool = False, + prop_tokens_to_load: float = 1.0, + **kwargs, + ): + """The call function of the wrapper. + + Args: + text (Union[str, List[str]]): The text to be tokenized. + vector_shuffle (bool, optional): Whether to shuffle the vectors. + Defaults to False. + prop_tokens_to_load (float, optional): The proportion of tokens to + be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0 + *args, **kwargs: The arguments for `self.wrapped.__call__`. + """ + replaced_text = self.replace_placeholder_tokens_in_text( + text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load + ) + + return self.wrapped.__call__(replaced_text, *args, **kwargs) + + def encode(self, text: Union[str, List[str]], *args, **kwargs): + """Encode the passed text to token index. + + Args: + text (Union[str, List[str]]): The text to be encode. + *args, **kwargs: The arguments for `self.wrapped.__call__`. + """ + replaced_text = self.replace_placeholder_tokens_in_text(text) + return self.wrapped(replaced_text, *args, **kwargs) + + def decode(self, token_ids, return_raw: bool = False, *args, **kwargs) -> Union[str, List[str]]: + """Decode the token index to text. + + Args: + token_ids: The token index to be decoded. + return_raw: Whether keep the placeholder token in the text. + Defaults to False. + *args, **kwargs: The arguments for `self.wrapped.decode`. + + Returns: + Union[str, List[str]]: The decoded text. + """ + text = self.wrapped.decode(token_ids, *args, **kwargs) + if return_raw: + return text + replaced_text = self.replace_text_with_placeholder_tokens(text) + return replaced_text + + def __repr__(self): + """The representation of the wrapper.""" + s = super().__repr__() + prefix = f"Wrapped Module Class: {self._module_cls}\n" + prefix += f"Wrapped Module Name: {self._module_name}\n" + if self._from_pretrained: + prefix += f"From Pretrained: {self._from_pretrained}\n" + s = prefix + s + return s + + +class EmbeddingLayerWithFixes(nn.Module): + """The revised embedding layer to support external embeddings. This design + of this class is inspired by https://github.com/AUTOMATIC1111/stable- + diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi + jack.py#L224 # noqa. + + Args: + wrapped (nn.Emebdding): The embedding layer to be wrapped. + external_embeddings (Union[dict, List[dict]], optional): The external + embeddings added to this layer. Defaults to None. + """ + + def __init__(self, wrapped: nn.Embedding, external_embeddings: Optional[Union[dict, List[dict]]] = None): + super().__init__() + self.wrapped = wrapped + self.num_embeddings = wrapped.weight.shape[0] + + self.external_embeddings = [] + if external_embeddings: + self.add_embeddings(external_embeddings) + + self.trainable_embeddings = nn.ParameterDict() + + @property + def weight(self): + """Get the weight of wrapped embedding layer.""" + return self.wrapped.weight + + def check_duplicate_names(self, embeddings: List[dict]): + """Check whether duplicate names exist in list of 'external + embeddings'. + + Args: + embeddings (List[dict]): A list of embedding to be check. + """ + names = [emb["name"] for emb in embeddings] + assert len(names) == len(set(names)), ( + "Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'" + ) + + def check_ids_overlap(self, embeddings): + """Check whether overlap exist in token ids of 'external_embeddings'. + + Args: + embeddings (List[dict]): A list of embedding to be check. + """ + ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings] + ids_range.sort() # sort by 'start' + # check if 'end' has overlapping + for idx in range(len(ids_range) - 1): + name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1] + assert ids_range[idx][1] <= ids_range[idx + 1][0], ( + f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'." + ) + + def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]): + """Add external embeddings to this layer. + + Use case: + + >>> 1. Add token to tokenizer and get the token id. + >>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32') + >>> # 'how much' in kiswahili + >>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4) + >>> + >>> 2. Add external embeddings to the model. + >>> new_embedding = { + >>> 'name': 'ngapi', # 'how much' in kiswahili + >>> 'embedding': torch.ones(1, 15) * 4, + >>> 'start': tokenizer.get_token_info('kwaheri')['start'], + >>> 'end': tokenizer.get_token_info('kwaheri')['end'], + >>> 'trainable': False # if True, will registry as a parameter + >>> } + >>> embedding_layer = nn.Embedding(10, 15) + >>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer) + >>> embedding_layer_wrapper.add_embeddings(new_embedding) + >>> + >>> 3. Forward tokenizer and embedding layer! + >>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?'] + >>> input_ids = tokenizer( + >>> input_text, padding='max_length', truncation=True, + >>> return_tensors='pt')['input_ids'] + >>> out_feat = embedding_layer_wrapper(input_ids) + >>> + >>> 4. Let's validate the result! + >>> assert (out_feat[0, 3: 7] == 2.3).all() + >>> assert (out_feat[2, 5: 9] == 2.3).all() + + Args: + embeddings (Union[dict, list[dict]]): The external embeddings to + be added. Each dict must contain the following 4 fields: 'name' + (the name of this embedding), 'embedding' (the embedding + tensor), 'start' (the start token id of this embedding), 'end' + (the end token id of this embedding). For example: + `{name: NAME, start: START, end: END, embedding: torch.Tensor}` + """ + if isinstance(embeddings, dict): + embeddings = [embeddings] + + self.external_embeddings += embeddings + self.check_duplicate_names(self.external_embeddings) + self.check_ids_overlap(self.external_embeddings) + + # set for trainable + added_trainable_emb_info = [] + for embedding in embeddings: + trainable = embedding.get("trainable", False) + if trainable: + name = embedding["name"] + embedding["embedding"] = torch.nn.Parameter(embedding["embedding"]) + self.trainable_embeddings[name] = embedding["embedding"] + added_trainable_emb_info.append(name) + + added_emb_info = [emb["name"] for emb in embeddings] + added_emb_info = ", ".join(added_emb_info) + print_log(f"Successfully add external embeddings: {added_emb_info}.", "current") + + if added_trainable_emb_info: + added_trainable_emb_info = ", ".join(added_trainable_emb_info) + print_log("Successfully add trainable external embeddings: " f"{added_trainable_emb_info}", "current") + + def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: + """Replace external input ids to 0. + + Args: + input_ids (torch.Tensor): The input ids to be replaced. + + Returns: + torch.Tensor: The replaced input ids. + """ + input_ids_fwd = input_ids.clone() + input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0 + return input_ids_fwd + + def replace_embeddings( + self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict + ) -> torch.Tensor: + """Replace external embedding to the embedding layer. Noted that, in + this function we use `torch.cat` to avoid inplace modification. + + Args: + input_ids (torch.Tensor): The original token ids. Shape like + [LENGTH, ]. + embedding (torch.Tensor): The embedding of token ids after + `replace_input_ids` function. + external_embedding (dict): The external embedding to be replaced. + + Returns: + torch.Tensor: The replaced embedding. + """ + new_embedding = [] + + name = external_embedding["name"] + start = external_embedding["start"] + end = external_embedding["end"] + target_ids_to_replace = list(range(start, end)) + ext_emb = external_embedding["embedding"] + + # do not need to replace + if not (input_ids == start).any(): + return embedding + + # start replace + s_idx, e_idx = 0, 0 + while e_idx < len(input_ids): + if input_ids[e_idx] == start: + if e_idx != 0: + # add embedding do not need to replace + new_embedding.append(embedding[s_idx:e_idx]) + + # check if the next embedding need to replace is valid + actually_ids_to_replace = [int(i) for i in input_ids[e_idx : e_idx + end - start]] + assert actually_ids_to_replace == target_ids_to_replace, ( + f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. " + f"Expect '{target_ids_to_replace}' for embedding " + f"'{name}' but found '{actually_ids_to_replace}'." + ) + + new_embedding.append(ext_emb) + + s_idx = e_idx + end - start + e_idx = s_idx + 1 + else: + e_idx += 1 + + if e_idx == len(input_ids): + new_embedding.append(embedding[s_idx:e_idx]) + + return torch.cat(new_embedding, dim=0) + + def forward(self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None): + """The forward function. + + Args: + input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or + [LENGTH, ]. + external_embeddings (Optional[List[dict]]): The external + embeddings. If not passed, only `self.external_embeddings` + will be used. Defaults to None. + + input_ids: shape like [bz, LENGTH] or [LENGTH]. + """ + assert input_ids.ndim in [1, 2] + if input_ids.ndim == 1: + input_ids = input_ids.unsqueeze(0) + + if external_embeddings is None and not self.external_embeddings: + return self.wrapped(input_ids) + + input_ids_fwd = self.replace_input_ids(input_ids) + inputs_embeds = self.wrapped(input_ids_fwd) + + vecs = [] + + if external_embeddings is None: + external_embeddings = [] + elif isinstance(external_embeddings, dict): + external_embeddings = [external_embeddings] + embeddings = self.external_embeddings + external_embeddings + + for input_id, embedding in zip(input_ids, inputs_embeds): + new_embedding = embedding + for external_embedding in embeddings: + new_embedding = self.replace_embeddings(input_id, new_embedding, external_embedding) + vecs.append(new_embedding) + + return torch.stack(vecs) + + +def add_tokens( + tokenizer, text_encoder, placeholder_tokens: list, initialize_tokens: list = None, num_vectors_per_token: int = 1 +): + """Add token for training. + + # TODO: support add tokens as dict, then we can load pretrained tokens. + """ + if initialize_tokens is not None: + assert len(initialize_tokens) == len( + placeholder_tokens + ), "placeholder_token should be the same length as initialize_token" + for ii in range(len(placeholder_tokens)): + tokenizer.add_placeholder_token(placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token) + + # text_encoder.set_embedding_layer() + embedding_layer = text_encoder.text_model.embeddings.token_embedding + text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(embedding_layer) + embedding_layer = text_encoder.text_model.embeddings.token_embedding + + assert embedding_layer is not None, ( + "Do not support get embedding layer for current text encoder. " "Please check your configuration." + ) + initialize_embedding = [] + if initialize_tokens is not None: + for ii in range(len(placeholder_tokens)): + init_id = tokenizer(initialize_tokens[ii]).input_ids[1] + temp_embedding = embedding_layer.weight[init_id] + initialize_embedding.append(temp_embedding[None, ...].repeat(num_vectors_per_token, 1)) + else: + for ii in range(len(placeholder_tokens)): + init_id = tokenizer("a").input_ids[1] + temp_embedding = embedding_layer.weight[init_id] + len_emb = temp_embedding.shape[0] + init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0 + initialize_embedding.append(init_weight) + + # initialize_embedding = torch.cat(initialize_embedding,dim=0) + + token_info_all = [] + for ii in range(len(placeholder_tokens)): + token_info = tokenizer.get_token_info(placeholder_tokens[ii]) + token_info["embedding"] = initialize_embedding[ii] + token_info["trainable"] = True + token_info_all.append(token_info) + embedding_layer.add_embeddings(token_info_all) + + +class ImageProjection(nn.Module): + def __init__( + self, + image_embed_dim: int = 768, + cross_attention_dim: int = 768, + num_image_text_embeds: int = 32, + ): + super().__init__() + + self.num_image_text_embeds = num_image_text_embeds + self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) + self.norm = nn.LayerNorm(cross_attention_dim) + + def forward(self, image_embeds: torch.FloatTensor): + batch_size = image_embeds.shape[0] + + # image + image_embeds = self.image_embeds(image_embeds) + image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1) + image_embeds = self.norm(image_embeds) + return image_embeds diff --git a/PowerPaint/pyproject.toml b/PowerPaint/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..0612f2f9e059e4f62e8d393aab01b6c2d73f7108 --- /dev/null +++ b/PowerPaint/pyproject.toml @@ -0,0 +1,27 @@ +[tool.ruff] +# Never enforce `E501` (line length violations). +ignore = ["C901", "E501", "E741", "F402", "F823"] +select = ["C", "E", "F", "I", "W"] +line-length = 119 + +# Ignore import violations in all `__init__.py` files. +[tool.ruff.per-file-ignores] +"__init__.py" = ["E402", "F401", "F403", "F811"] +"src/diffusers/utils/dummy_*.py" = ["F401"] + +[tool.ruff.isort] +lines-after-imports = 2 +known-first-party = ["diffusers"] + +[tool.ruff.format] +# Like Black, use double quotes for strings. +quote-style = "double" + +# Like Black, indent with spaces, rather than tabs. +indent-style = "space" + +# Like Black, respect magic trailing commas. +skip-magic-trailing-comma = false + +# Like Black, automatically detect the appropriate line ending. +line-ending = "auto" diff --git a/PowerPaint/requirements/ppt.yml b/PowerPaint/requirements/ppt.yml new file mode 100644 index 0000000000000000000000000000000000000000..11ff61b2890cfa30f5f7e9807ec233584931571a --- /dev/null +++ b/PowerPaint/requirements/ppt.yml @@ -0,0 +1,161 @@ +name: ppt +channels: + - defaults +dependencies: + - _libgcc_mutex=0.1=main + - _openmp_mutex=5.1=1_gnu + - ca-certificates=2024.3.11=h06a4308_0 + - git-lfs=3.5.1=h06a4308_0 + - ld_impl_linux-64=2.38=h1181459_1 + - libffi=3.4.4=h6a678d5_1 + - libgcc-ng=11.2.0=h1234567_1 + - libgomp=11.2.0=h1234567_1 + - libstdcxx-ng=11.2.0=h1234567_1 + - ncurses=6.4=h6a678d5_0 + - openssl=3.0.14=h5eee18b_0 + - pip=24.0=py39h06a4308_0 + - python=3.9.19=h955ad1f_1 + - readline=8.2=h5eee18b_0 + - setuptools=69.5.1=py39h06a4308_0 + - sqlite=3.45.3=h5eee18b_0 + - tk=8.6.14=h39e8969_0 + - wheel=0.43.0=py39h06a4308_0 + - xz=5.4.6=h5eee18b_1 + - zlib=1.2.13=h5eee18b_1 + - pip: + - accelerate==0.31.0 + - addict==2.4.0 + - aiofiles==23.2.1 + - altair==5.3.0 + - annotated-types==0.7.0 + - anyio==4.4.0 + - attrs==23.2.0 + - blessed==1.20.0 + - certifi==2024.6.2 + - cfgv==3.4.0 + - charset-normalizer==3.3.2 + - click==8.1.7 + - contourpy==1.2.1 + - controlnet-aux==0.0.3 + - cycler==0.12.1 + - diffusers==0.27.0 + - distlib==0.3.8 + - dnspython==2.6.1 + - einops==0.8.0 + - email-validator==2.2.0 + - exceptiongroup==1.2.1 + - fastapi==0.111.0 + - fastapi-cli==0.0.4 + - ffmpy==0.3.2 + - filelock==3.15.4 + - fonttools==4.53.0 + - fsspec==2024.6.0 + - gpustat==1.1.1 + - gradio==3.41.0 + - gradio-client==0.5.0 + - h11==0.14.0 + - hf-transfer==0.1.6 + - httpcore==1.0.5 + - httptools==0.6.1 + - httpx==0.27.0 + - huggingface-hub==0.23.4 + - identify==2.5.36 + - idna==3.7 + - imageio==2.34.2 + - importlib-metadata==7.2.1 + - importlib-resources==6.4.0 + - jinja2==3.1.4 + - jsonschema==4.22.0 + - jsonschema-specifications==2023.12.1 + - kiwisolver==1.4.5 + - lazy-loader==0.4 + - markdown-it-py==3.0.0 + - markupsafe==2.1.5 + - matplotlib==3.9.0 + - mdurl==0.1.2 + - mmengine==0.10.4 + - mpmath==1.3.0 + - networkx==3.2.1 + - nodeenv==1.9.1 + - numpy==1.26.4 + - nvidia-cublas-cu11==11.11.3.6 + - nvidia-cublas-cu12==12.1.3.1 + - nvidia-cuda-cupti-cu11==11.8.87 + - nvidia-cuda-cupti-cu12==12.1.105 + - nvidia-cuda-nvrtc-cu11==11.8.89 + - nvidia-cuda-nvrtc-cu12==12.1.105 + - nvidia-cuda-runtime-cu11==11.8.89 + - nvidia-cuda-runtime-cu12==12.1.105 + - nvidia-cudnn-cu11==8.7.0.84 + - nvidia-cudnn-cu12==8.9.2.26 + - nvidia-cufft-cu11==10.9.0.58 + - nvidia-cufft-cu12==11.0.2.54 + - nvidia-curand-cu11==10.3.0.86 + - nvidia-curand-cu12==10.3.2.106 + - nvidia-cusolver-cu11==11.4.1.48 + - nvidia-cusolver-cu12==11.4.5.107 + - nvidia-cusparse-cu11==11.7.5.86 + - nvidia-cusparse-cu12==12.1.0.106 + - nvidia-ml-py==12.555.43 + - nvidia-nccl-cu11==2.20.5 + - nvidia-nccl-cu12==2.20.5 + - nvidia-nvjitlink-cu12==12.5.40 + - nvidia-nvtx-cu11==11.8.86 + - nvidia-nvtx-cu12==12.1.105 + - opencv-python==4.10.0.84 + - orjson==3.10.5 + - packaging==24.1 + - pandas==2.2.2 + - pillow==10.3.0 + - platformdirs==4.2.2 + - pre-commit==3.7.1 + - psutil==6.0.0 + - pydantic==2.7.4 + - pydantic-core==2.18.4 + - pydub==0.25.1 + - pygments==2.18.0 + - pyparsing==3.1.2 + - python-dateutil==2.9.0.post0 + - python-dotenv==1.0.1 + - python-multipart==0.0.9 + - pytz==2024.1 + - pyyaml==6.0.1 + - referencing==0.35.1 + - regex==2024.5.15 + - requests==2.32.3 + - rich==13.7.1 + - rpds-py==0.18.1 + - safetensors==0.4.3 + - scikit-image==0.24.0 + - scipy==1.13.1 + - semantic-version==2.10.0 + - shellingham==1.5.4 + - six==1.16.0 + - sniffio==1.3.1 + - starlette==0.37.2 + - sympy==1.12.1 + - termcolor==2.4.0 + - tifffile==2024.6.18 + - timm==1.0.7 + - tokenizers==0.13.3 + - tomli==2.0.1 + - toolz==0.12.1 + - torch==2.3.1+cu118 + - torchaudio==2.3.1+cu118 + - torchvision==0.18.1+cu118 + - tqdm==4.66.4 + - transformers==4.28.0 + - triton==2.3.1 + - typer==0.12.3 + - typing-extensions==4.12.2 + - tzdata==2024.1 + - ujson==5.10.0 + - urllib3==2.2.2 + - uvicorn==0.30.1 + - uvloop==0.19.0 + - virtualenv==20.26.3 + - watchfiles==0.22.0 + - wcwidth==0.2.13 + - websockets==11.0.3 + - yapf==0.40.2 + - zipp==3.19.2 diff --git a/PowerPaint/requirements/requirements.txt b/PowerPaint/requirements/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..e74317b2077ce09c66a69beec23f452119c8e834 --- /dev/null +++ b/PowerPaint/requirements/requirements.txt @@ -0,0 +1,9 @@ +accelerate +controlnet-aux==0.0.3 +diffusers==0.27.0 +gradio==3.41.0 +mmengine +opencv-python +torch +torchvision +transformers==4.28.0 diff --git a/README.md b/README.md index 1e32d9196be66b976a6dd95c4262e99d8f5784f8..242ea0d9c73bf21ec5510496837569b07416448f 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,3 @@ ---- -title: Image2image Demos -emoji: šŸ“Š -colorFrom: indigo -colorTo: purple -sdk: docker -pinned: false -license: mit ---- +# gradio_dynamic -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference +* Run `docker build .` in the directory, and it will build a docker image. diff --git a/gradio_dynamic.py b/gradio_dynamic.py new file mode 100644 index 0000000000000000000000000000000000000000..1880f5b21919f7261419aba566f7da6e29e49394 --- /dev/null +++ b/gradio_dynamic.py @@ -0,0 +1,478 @@ +import os +# os.environ["CUDA_VISIBLE_DEVICES"] = "2" +import tensorflow as tf +import gradio as gr +import tensorflow_hub as hub +import random +import time +import PIL.Image +from PIL import Image +import numpy as np +import requests +from io import BytesIO +# from diffusers import StableDiffusionUpscalePipeline +from simple_lama_inpainting import SimpleLama +import torch +from shutil import copyfile +from PowerPaint import app +import argparse + +def pil_to_binary_mask(pil_image, threshold=0): + np_image = np.array(pil_image) + grayscale_image = Image.fromarray(np_image).convert("L") + binary_mask = np.array(grayscale_image) > threshold + mask = np.zeros(binary_mask.shape, dtype=np.uint8) + for i in range(binary_mask.shape[0]): + for j in range(binary_mask.shape[1]): + if binary_mask[i,j] == True : + mask[i,j] = 1 + mask = (mask*255).astype(np.uint8) + output_mask = Image.fromarray(mask) + return output_mask + +def tensor_to_image(tensor): + tensor = tensor*255 + tensor = np.array(tensor, dtype=np.uint8) + if np.ndim(tensor)>3: + assert tensor.shape[0] == 1 + tensor = tensor[0] + return PIL.Image.fromarray(tensor) + +def load_img(path_to_img): + max_dim = 512 + img = tf.io.read_file(path_to_img) + img = tf.image.decode_image(img, channels=3) + img = tf.image.convert_image_dtype(img, tf.float32) + + shape = tf.cast(tf.shape(img)[:-1], tf.float32) + long_dim = max(shape) + scale = max_dim / long_dim + + new_shape = tf.cast(shape * scale, tf.int32) + + img = tf.image.resize(img, new_shape) + img = img[tf.newaxis, :] + return img + +# Do main logic (simple version) +def start_stylize_simple(img, style_img): + + # global hub_model + hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') + + # Save to disk, put random number as a ID to avoid collision + ID = int(time.time()) + img.save(filepath + f'/tmp/tmp_image-{ID}.jpg') + style_img.save(filepath + f'/tmp/tmp_style_image-{ID}.jpg') + + # Load the input images. + content_image = load_img(filepath + f'/tmp/tmp_image-{ID}.jpg') + style_image = load_img(filepath + f'/tmp/tmp_style_image-{ID}.jpg') + + stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] + tensor_to_image(stylized_image).save(filepath + f'/tmp/result-{ID}.jpg') + + return filepath + f'/tmp/result-{ID}.jpg' + +def background_remove(img): + from rembg import new_session + from rembg import remove + session = new_session('isnet-general-use') + # Save to disk, put random number as a ID to avoid collision + ID = int(time.time()) + img.save(filepath + f'/tmp/tmp_image-{ID}.jpg') + + with open(filepath + f'/tmp/tmp_image-{ID}.jpg', 'rb') as i: + with open(filepath + f'/tmp/tmp_result-{ID}.jpg', 'wb') as o: + input = i.read() + output = remove(input, session = session) + o.write(output) + + return filepath + f'/tmp/tmp_result-{ID}.jpg' + +def object_remove(imgs): + ts = int(time.time()) + os.mkdir(filepath + f'/tmp/tmp_image-{ts}') + os.mkdir(filepath + f'/tmp/tmp_mask-{ts}') + os.mkdir(filepath + f'/tmp/tmp_output-{ts}') + img = imgs["background"].convert("RGB") + mask = pil_to_binary_mask(imgs['layers'][-1].convert("RGB")) + img.save(filepath + f'/tmp/tmp_image-{ts}/image.png') + mask.save(filepath + f'/tmp/tmp_mask-{ts}/image.png') + + simple_lama = SimpleLama() + img_path = filepath + f'/tmp/tmp_image-{ts}/image.png' + mask_path = filepath + f'/tmp/tmp_mask-{ts}/image.png' + + image = Image.open(img_path) + mask = Image.open(mask_path).convert('L') + + result = simple_lama(image, mask) + result.save(f"{filepath}/tmp/tmp_output-{ts}/image.png") + + # os.system(f'simple_lama {filepath}/tmp/tmp_image-{ts}/image.png {filepath}/tmp/tmp_mask-{ts}/image.png {filepath}/tmp/tmp_output-{ts}/image.png') + # os.system(f'iopaint run --model=lama --device=cuda --image={filepath}/tmp/tmp_image-{ts} --mask={filepath}/tmp/tmp_mask-{ts} --output={filepath}/tmp/tmp_output-{ts}') + # filename = os.listdir(filepath + f'/tmp/tmp_output-{ts}')[0] + return filepath + f'/tmp/tmp_output-{ts}/image.png' + +def upscale(img): #, prompt, upscale_radio): + # Save to disk, put random number as a ID to avoid collision + ID = int(time.time()) + img.save(filepath + f'/tmp/tmp_image-{ID}.jpg') + + if False: #upscale_radio == 'Stable Diffusion x4 upscaler': + + # load model and scheduler + model_id = "stabilityai/stable-diffusion-x4-upscaler" + pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) + pipeline = pipeline.to("cuda") + + # let's download an image + #url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" + #response = requests.get(url) + low_res_img = Image.open(filepath + f'/tmp/tmp_image-{ID}.jpg') + width, height = low_res_img.size + low_res_img = low_res_img.resize((128, 128)) + + # prompt = "a white cat" + + upscaled_image = pipeline(prompt = prompt, image=low_res_img).images[0] + upscaled_image.resize((width, height)).save(filepath + f'/tmp/tmp_result-{ID}.jpg') + # Image.open(filepath + f'/tmp/tmp_result-{ID}.jpg').resize((width, height)) + + else: + os.system(f'python3 {filepath}/Real-ESRGAN/inference_realesrgan.py -n RealESRGAN_x4plus -i {filepath}/tmp/tmp_image-{ID}.jpg') + copyfile(f'{filepath}/results/tmp_image-{ID}_out.jpg', f'{filepath}/tmp/tmp_result-{ID}.jpg') + + return filepath + f'/tmp/tmp_result-{ID}.jpg' + +def in_painting(*args): + ID = int(time.time()) + global flag + global controller + if flag == 0: + try: + controller = app.PowerPaintController(weight_dtype, "./checkpoints/ppt-v1", True, "ppt-v1") + flag += 1 + except: + controller = app.PowerPaintController(weight_dtype, "./checkpoints/ppt-v1", False, "ppt-v1") + + result = controller.infer(*args)[0][0] + result.save(f'{filepath}/tmp/tmp_result-{ID}.jpg') + return f'{filepath}/tmp/tmp_result-{ID}.jpg' + +def radio_click(choice): + if choice == "Art style transfer": + return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)] + elif choice == "Object erasing": + return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)] + elif choice == "In painting": + return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)] + elif choice == "Background removal": + return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)] + elif choice == "Image upscaling": + return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] + else: + return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)] + +if __name__ == '__main__': + args = argparse.ArgumentParser() + args.add_argument("--weight_dtype", type=str, default="float16") + args.add_argument("--checkpoint_dir", type=str, default="./checkpoints/ppt-v1") + args.add_argument("--version", type=str, default="ppt-v1") + args.add_argument("--share", action="store_true") + args.add_argument( + "--local_files_only", action="store_true", help="enable it to use cached files without requesting from the hub" + ) + args.add_argument("--port", type=int, default=7860) + args = args.parse_args() + + # initialize the pipeline controller + weight_dtype = torch.float16 if args.weight_dtype == "float16" else torch.float32 + flag = 0 + + filepath = os.path.dirname(os.path.abspath(__file__)) + + physical_devices = tf.config.experimental.list_physical_devices('GPU') + for i in physical_devices: + tf.config.experimental.set_memory_growth(i, True) + + os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' + # hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') + + os.environ['GRADIO_TEMP_DIR']="/home/gradio_demos/tmp" + with gr.Blocks() as demo: + gr.Markdown("# Image2Image Demos") + + #radio = gr.Radio(["Art style transfer", "Object erasing", "In painting", "Background removal", "Image upscaling"], value="Art style transfer", label = "Choose functionality") + radio = gr.Radio(["Art style transfer", "Object erasing", "In painting", "Background removal", "Image upscaling"], value="Art style transfer", label = "Choose functionality") + with gr.Column(visible = True) as art_style_transfer_block: + gr.Markdown("## Art style transfer") + gr.Markdown("### Using [arbitrary-image-stylization-v1](https://www.kaggle.com/models/google/arbitrary-image-stylization-v1/tensorFlow1/256/2) model") + with gr.Row(): + with gr.Column(): + img = gr.Image(sources='upload', type="pil", label='Image to apply art style') + + img_list = os.listdir(filepath + "/images") + img_list_path = [os.path.join(filepath + "/images", image) for image in img_list] + + example = gr.Examples( + inputs=img, + examples_per_page=6, + examples=img_list_path + ) + with gr.Column(): + style_img = gr.Image(label="Art syle image", sources='upload', type="pil") + + style_list = os.listdir(filepath + "/style_images") + style_list_path = [os.path.join(filepath + "/style_images", style_image) for style_image in style_list] + + example = gr.Examples( + inputs=style_img, + examples_per_page=6, + examples=style_list_path + ) + with gr.Column(): + # image_out = gr.Image(label="Output", elem_id="output-img", height=400) + image_out = gr.Image(label="Stylized image", elem_id="output-img" ,show_share_button=False, type = 'filepath') + + stylize_button = gr.Button(value="Stylize") + + with gr.Column(visible = False) as object_erasing_block: + gr.Markdown("## Object erasing") + gr.Markdown("### Using [lama](https://github.com/enesmsahin/simple-lama-inpainting) model") + with gr.Row(): + with gr.Column(): + imgs4 = gr.ImageEditor(sources='upload', type="pil", label='Image to erase object', interactive=True) + + img_list = os.listdir(filepath + "/images4") + img_list_path = [os.path.join(filepath + "/images4", image) for image in img_list] + + example = gr.Examples( + inputs=imgs4, + examples_per_page=6, + examples=img_list_path + ) + with gr.Column(): + image_out4 = gr.Image(label="Object removed image" ,show_share_button=False, type = 'filepath') + + object_remove_button = gr.Button(value="Remove object") + + with gr.Column(visible = False) as in_painting_block: + gr.Markdown("## In painting") + gr.Markdown("### Using [Powerpaint](https://github.com/open-mmlab/PowerPaint) model") + with gr.Row(): + with gr.Column(): + #gr.Markdown("### Input image and draw mask") + input_image = gr.ImageEditor(sources="upload", type="pil", label='Image to in-paint', interactive=True) + + img_list = os.listdir(filepath + "/images4") + img_list_path = [os.path.join(filepath + "/images4", image) for image in img_list] + + example = gr.Examples( + inputs=input_image, + examples_per_page=6, + examples=img_list_path + ) + + task = gr.Radio( + ["text-guided", "object-removal", "shape-guided", "image-outpainting"], + show_label=False, + visible=False, + ) + + # Text-guided object inpainting + with gr.Tab("Text-guided object inpainting") as tab_text_guided: + enable_text_guided = gr.Checkbox( + label="Enable text-guided object inpainting", value=True, interactive=False, visible = False + ) + text_guided_prompt = gr.Textbox(label="Prompt") + text_guided_negative_prompt = gr.Textbox(label="negative_prompt") + tab_text_guided.select(fn=app.select_tab_text_guided, inputs=None, outputs=task) + + # currently, we only support controlnet in PowerPaint-v1 + if args.version == "ppt-v1": + # gr.Markdown("### Controlnet setting") + enable_control = gr.Checkbox( + label="Enable controlnet", info="Enable this if you want to use controlnet", visible = False + ) + controlnet_conditioning_scale = gr.Slider( + label="controlnet conditioning scale", + minimum=0, + maximum=1, + step=0.05, + value=0.5, + visible = False + ) + control_type = gr.Radio(["canny", "pose", "depth", "hed"], label="Control type", visible = False) + input_control_image = gr.ImageEditor(sources="upload", type="pil", visible = False) + + # Object removal inpainting + with gr.Tab("Object removal inpainting", visible = False) as tab_object_removal: + enable_object_removal = gr.Checkbox( + label="Enable object removal inpainting", + value=True, + info="The recommended configuration for the Guidance Scale is 10 or higher. \ + If undesired objects appear in the masked area, \ + you can address this by specifically increasing the Guidance Scale.", + interactive=False, + ) + removal_prompt = gr.Textbox(label="Prompt") + removal_negative_prompt = gr.Textbox(label="negative_prompt") + tab_object_removal.select(fn=app.select_tab_object_removal, inputs=None, outputs=task) + + # Object image outpainting + with gr.Tab("Image outpainting", visible = False) as tab_image_outpainting: + enable_object_removal = gr.Checkbox( + label="Enable image outpainting", + value=True, + info="The recommended configuration for the Guidance Scale is 10 or higher. \ + If unwanted random objects appear in the extended image region, \ + you can enhance the cleanliness of the extension area by increasing the Guidance Scale.", + interactive=False, + ) + outpaint_prompt = gr.Textbox(label="Outpainting_prompt") + outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt") + horizontal_expansion_ratio = gr.Slider( + label="horizontal expansion ratio", + minimum=1, + maximum=4, + step=0.05, + value=1, + ) + vertical_expansion_ratio = gr.Slider( + label="vertical expansion ratio", + minimum=1, + maximum=4, + step=0.05, + value=1, + ) + tab_image_outpainting.select(fn=app.select_tab_image_outpainting, inputs=None, outputs=task) + + # Shape-guided object inpainting + with gr.Tab("Shape-guided object inpainting", visible = False) as tab_shape_guided: + enable_shape_guided = gr.Checkbox( + label="Enable shape-guided object inpainting", value=True, interactive=False + ) + shape_guided_prompt = gr.Textbox(label="shape_guided_prompt") + shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt") + fitting_degree = gr.Slider( + label="fitting degree", + minimum=0, + maximum=1, + step=0.05, + value=1, + ) + tab_shape_guided.select(fn=app.select_tab_shape_guided, inputs=None, outputs=task) + + seed = gr.Slider( + label="Seed", + minimum=0, + maximum=2147483647, + step=1, + randomize=True, + ) + + + with gr.Accordion("Advanced options", open=False, visible = False): + ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1) + scale = gr.Slider( + label="Guidance Scale", + info="For object removal and image outpainting, it is recommended to set the value at 10 or above.", + minimum=0.1, + maximum=30.0, + value=7.5, + step=0.1, + ) + + with gr.Column(): + # gr.Markdown("### Inpainting result") + # inpaint_result = gr.Gallery(label="Generated image", show_label=True, columns=1) + inpaint_result = gr.Image(label="Generated image", elem_id="output-img" ,show_share_button=False, type = 'filepath') + #gr.Markdown("### Mask") + gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2, visible = False) + + run_button = gr.Button(value="In-paint") + run_button.click( + fn=in_painting, #controller.infer, + inputs=[ + input_image, + text_guided_prompt, + text_guided_negative_prompt, + shape_guided_prompt, + shape_guided_negative_prompt, + fitting_degree, + ddim_steps, + scale, + seed, + task, + vertical_expansion_ratio, + horizontal_expansion_ratio, + outpaint_prompt, + outpaint_negative_prompt, + removal_prompt, + removal_negative_prompt, + enable_control, + input_control_image, + control_type, + controlnet_conditioning_scale, + ], + outputs=[inpaint_result]#, gallery], + ) + + with gr.Column(visible = False) as background_removal_block: + gr.Markdown("## Background removal") + gr.Markdown("### Using [rembg](https://pypi.org/project/rembg/) model") + with gr.Row(): + with gr.Column(): + img2 = gr.Image(sources='upload', type="pil", label='Image to remove background') + + img_list = os.listdir(filepath + "/images2") + img_list_path = [os.path.join(filepath + "/images2", image) for image in img_list] + + example = gr.Examples( + inputs=img2, + examples_per_page=6, + examples=img_list_path + ) + + with gr.Column(): + # image_out = gr.Image(label="Output", elem_id="output-img", height=400) + image_out2 = gr.Image(label="Background removed image", elem_id="output-img" ,show_share_button=False, type = 'filepath') + + background_remove_button = gr.Button(value="Remove background") + + with gr.Column(visible = False) as image_upscaling_block: + gr.Markdown("## Image upscaling") + # gr.Markdown("### Using [Stable Diffusion x4 upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) or [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) model") + gr.Markdown("### Using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) model") + with gr.Row(): + with gr.Column(): + img3 = gr.Image(sources='upload', type="pil", label='Image to upscale') + + img_list = os.listdir(filepath + "/images3") + img_list_path = [os.path.join(filepath + "/images3", image) for image in img_list] + + example = gr.Examples( + inputs=img3, + examples_per_page=6, + examples=img_list_path + ) + # prompt = gr.Textbox(label="Prompt") + # upscale_radio = gr.Radio(["Stable Diffusion x4 upscaler", "Real-ESRGAN"], value="Stable Diffusion x4 upscaler", label = "Choose a model") + + + with gr.Column(): + # image_out = gr.Image(label="Output", elem_id="output-img", height=400) + image_out3 = gr.Image(label="Upscaled image", elem_id="output-img" ,show_share_button=False, type = 'filepath') + + upscale_button = gr.Button(value="Upscale") + + stylize_button.click(fn=start_stylize_simple, inputs=[img, style_img], outputs=[image_out], api_name='stylize') + background_remove_button.click(fn=background_remove, inputs=[img2], outputs=[image_out2], api_name='background_removal') + object_remove_button.click(fn=object_remove, inputs=[imgs4], outputs=[image_out4], api_name='object_removal') + upscale_button.click(fn=upscale, inputs=[img3], outputs=[image_out3], api_name='upscale') + radio.change(radio_click, radio, [art_style_transfer_block, object_erasing_block, in_painting_block, background_removal_block, image_upscaling_block]) + + demo.launch(share=False, server_name="0.0.0.0", ssl_verify=False) + # demo.launch(share=True) \ No newline at end of file diff --git a/images/belfry-cropped.jpg b/images/belfry-cropped.jpg new file mode 100644 index 0000000000000000000000000000000000000000..24f4e1019eb07bb6c10d83dd9dae281bc46bf0ce Binary files /dev/null and b/images/belfry-cropped.jpg differ diff --git a/images/bridge.jpg b/images/bridge.jpg new file mode 100644 index 0000000000000000000000000000000000000000..647e726ddabd90b727504c4c67f26e9e6725d5f7 Binary files /dev/null and b/images/bridge.jpg differ diff --git a/images/m_content.png b/images/m_content.png new file mode 100644 index 0000000000000000000000000000000000000000..fb93b5f9f96a4e2152fc8be5261a91acbd65e1f2 Binary files /dev/null and b/images/m_content.png differ diff --git a/images/puppy-cropped.jpg b/images/puppy-cropped.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6b67fd23a6ec731096be63affa85969a94505d4c Binary files /dev/null and b/images/puppy-cropped.jpg differ diff --git a/images/statue-of-liberty.jpg b/images/statue-of-liberty.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a1190b9cb033162e02a3feeeb85af672afe22aac Binary files /dev/null and b/images/statue-of-liberty.jpg differ diff --git a/images/streets.jpg b/images/streets.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3ca16f957467bac9b4efdb4e05dcb7d91454f3be Binary files /dev/null and b/images/streets.jpg differ diff --git a/images2/Dubai_Marina_Skyline.jpg b/images2/Dubai_Marina_Skyline.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9e5a02effe0c3312948b9046a18603f4213986e4 Binary files /dev/null and b/images2/Dubai_Marina_Skyline.jpg differ diff --git a/images2/McLaren.jpeg b/images2/McLaren.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..492c68991bfac53804357b2f2d4e2007a5f62b93 Binary files /dev/null and b/images2/McLaren.jpeg differ diff --git a/images2/chipmunk.jpg b/images2/chipmunk.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d50bdc1dd4e6850f98b2d623e890a6e82dcc12d6 Binary files /dev/null and b/images2/chipmunk.jpg differ diff --git a/images2/hamburger.jpg b/images2/hamburger.jpg new file mode 100644 index 0000000000000000000000000000000000000000..79bd4fe0abf15384735c28031c0462d75140a2a8 Binary files /dev/null and b/images2/hamburger.jpg differ diff --git a/images2/spongebob.webp b/images2/spongebob.webp new file mode 100644 index 0000000000000000000000000000000000000000..92e14ce9c2130fa72ed946a633868a97077ecbc4 Binary files /dev/null and b/images2/spongebob.webp differ diff --git a/images3/camel.jpg b/images3/camel.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4b9a1d80029dfe2da80ad616a53720dd0a225e45 Binary files /dev/null and b/images3/camel.jpg differ diff --git a/images3/cat.png b/images3/cat.png new file mode 100644 index 0000000000000000000000000000000000000000..9eed5bb88fb4fddeb37ac8a36ff0f609d8116ed2 Binary files /dev/null and b/images3/cat.png differ diff --git a/images3/flower.jpg b/images3/flower.jpg new file mode 100644 index 0000000000000000000000000000000000000000..abf00bd8991bd1d0ce7446ac4de06099a1a8707d Binary files /dev/null and b/images3/flower.jpg differ diff --git a/images3/grandpa.png b/images3/grandpa.png new file mode 100644 index 0000000000000000000000000000000000000000..e136d68a8199d424a16925907a4278d32d8a5210 Binary files /dev/null and b/images3/grandpa.png differ diff --git a/images4/baloon.jpg b/images4/baloon.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fb415e3a063c9f3597a226976330b2fdb3a7a52a Binary files /dev/null and b/images4/baloon.jpg differ diff --git a/images4/beach.jpg b/images4/beach.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f2943be5491b59f50bdc0ec3f88510eeb565812f Binary files /dev/null and b/images4/beach.jpg differ diff --git a/images4/bird.jpg b/images4/bird.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1ef1d3a6e33b51879be773081f1d3c064666a677 Binary files /dev/null and b/images4/bird.jpg differ diff --git a/images4/snow_mountain.jpg b/images4/snow_mountain.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bed45d3810dc287e6e93a0d03f6c42c38f41a2c2 Binary files /dev/null and b/images4/snow_mountain.jpg differ diff --git a/style_images/m_style.png b/style_images/m_style.png new file mode 100644 index 0000000000000000000000000000000000000000..7958cdb9fa055f0eb48d4cbd5e3c746ab8541e81 Binary files /dev/null and b/style_images/m_style.png differ diff --git a/style_images/starry_night.jpg b/style_images/starry_night.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7dad348cf4e77299b21c6c58d550b17fd187b324 Binary files /dev/null and b/style_images/starry_night.jpg differ diff --git a/style_images/style23.jpg b/style_images/style23.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3372e6a97af73bc0c66e596c3a6d1edf3c3e3713 Binary files /dev/null and b/style_images/style23.jpg differ diff --git a/style_images/style4.jpg b/style_images/style4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ad72437d1f4854297187657cbd1921a813b9e82c Binary files /dev/null and b/style_images/style4.jpg differ diff --git a/style_images/the_scream.jpg b/style_images/the_scream.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b49e5d12627e04b335fe1265834ce8f6da18545b Binary files /dev/null and b/style_images/the_scream.jpg differ diff --git a/style_images/tom_and_jerry.jpg b/style_images/tom_and_jerry.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b001f3501dbaa4d2bba2bce2086b84375f287c4f Binary files /dev/null and b/style_images/tom_and_jerry.jpg differ