yslan commited on
Commit
fc5658b
·
1 Parent(s): ce56ec2
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -10,7 +10,7 @@ print('xformers version: {}'.format(xformers.__version__))
10
 
11
  def install_cuda_toolkit():
12
  # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
13
- CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
14
  CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
15
  subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
16
  subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
@@ -114,6 +114,9 @@ from utils.infer_utils import remove_background, resize_foreground
114
 
115
  SEED = 0
116
 
 
 
 
117
  def resize_to_224(img):
118
  img = transforms.functional.resize(img, 518, # required by dino.
119
  interpolation=transforms.InterpolationMode.LANCZOS)
@@ -147,7 +150,7 @@ def main(args_1, args_2):
147
  dist_util.setup_dist(args_1)
148
  logger.configure(dir=args_1.logdir)
149
 
150
- th.cuda.empty_cache()
151
 
152
  th.cuda.manual_seed_all(SEED)
153
  np.random.seed(SEED)
@@ -170,9 +173,9 @@ def main(args_1, args_2):
170
 
171
  opts = eg3d_options_default()
172
 
173
- denoise_model_stage1.to(dist_util.dev())
174
  denoise_model_stage1.eval()
175
- denoise_model_stage2.to(dist_util.dev())
176
  denoise_model_stage2.eval()
177
 
178
  # * auto-encoder reconstruction model
@@ -181,7 +184,7 @@ def main(args_1, args_2):
181
  **args_to_dict(args_1,
182
  encoder_and_nsr_defaults().keys()))
183
 
184
- auto_encoder.to(dist_util.dev())
185
  auto_encoder.eval()
186
 
187
  # faster inference
@@ -287,7 +290,7 @@ def main(args_1, args_2):
287
  </div>
288
 
289
  # GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation
290
- **GaussianAnything is a native 3D diffusion model that supports high-quality 2D Gaussians generation.
291
  It first trains a 3D VAE on **Objaverse**, which compress each 3D asset into a compact point cloud-structured latent.
292
  After that, a image/text-conditioned diffusion model is trained following LDM paradigm.
293
  The model used in the demo adopts 3D DiT architecture and flow-matching framework, and supports single-image condition.
 
10
 
11
  def install_cuda_toolkit():
12
  # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
13
+ CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" # ! cu121 already installed
14
  CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
15
  subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
16
  subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
 
114
 
115
  SEED = 0
116
 
117
+ torch.set_grad_enabled(False)
118
+ device = torch.device('cuda')
119
+
120
  def resize_to_224(img):
121
  img = transforms.functional.resize(img, 518, # required by dino.
122
  interpolation=transforms.InterpolationMode.LANCZOS)
 
150
  dist_util.setup_dist(args_1)
151
  logger.configure(dir=args_1.logdir)
152
 
153
+ # th.cuda.empty_cache()
154
 
155
  th.cuda.manual_seed_all(SEED)
156
  np.random.seed(SEED)
 
173
 
174
  opts = eg3d_options_default()
175
 
176
+ denoise_model_stage1.to(device)
177
  denoise_model_stage1.eval()
178
+ denoise_model_stage2.to(device)
179
  denoise_model_stage2.eval()
180
 
181
  # * auto-encoder reconstruction model
 
184
  **args_to_dict(args_1,
185
  encoder_and_nsr_defaults().keys()))
186
 
187
+ auto_encoder.to(device)
188
  auto_encoder.eval()
189
 
190
  # faster inference
 
290
  </div>
291
 
292
  # GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation
293
+ **GaussianAnything** is a native 3D diffusion model that supports high-quality 2D Gaussians generation.
294
  It first trains a 3D VAE on **Objaverse**, which compress each 3D asset into a compact point cloud-structured latent.
295
  After that, a image/text-conditioned diffusion model is trained following LDM paradigm.
296
  The model used in the demo adopts 3D DiT architecture and flow-matching framework, and supports single-image condition.