Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,844 Bytes
27ff067 59a6cfe c9669c7 267d055 c3a2df4 2ab2d9e 89337c5 2ab2d9e c3a2df4 2ab2d9e c3a2df4 2ab2d9e c3a2df4 2ab2d9e 59a6cfe 267d055 2ce902e 267d055 cf99ccb 267d055 c3a2df4 267d055 c3a2df4 267d055 c3a2df4 267d055 c3a2df4 267d055 c3a2df4 267d055 c3a2df4 27ff067 2ab2d9e c3a2df4 b1f02f8 c3a2df4 b1f02f8 2ce902e b1f02f8 61175c7 b1f02f8 61175c7 b1f02f8 61175c7 b1f02f8 61175c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import gradio as gr
import spaces
import subprocess
import torch
import torchvision
from torchvision import transforms
import numpy as np
import os
from PIL import Image
import rembg
from huggingface_hub import hf_hub_download
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import json
import sys
import os
sys.path.append('.')
from pdb import set_trace as st
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
from dnnlib.util import EasyDict
def install_dependency():
# install full cuda first
# subprocess.run(
# f'conda install -c nvidia cuda-nvcc',
# shell=True
# )
# install apex
subprocess.run(
f'TORCH_CUDA_ARCH_LIST="compute capability" FORCE_CUDA=1 {sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git@master',
shell=True,
)
th.backends.cuda.matmul.allow_tf32 = True
th.backends.cudnn.allow_tf32 = True
th.backends.cudnn.enabled = True
# install_dependency()
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
# NUM_CLASSES,
# add_dict_to_argparser,
# continuous_diffusion_defaults,
# control_net_defaults,
)
from pathlib import Path
from tqdm import tqdm, trange
import dnnlib
from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults
# from datasets.shapenet import load_eval_data
# from torch.utils.data import Subset
# from datasets.eg3d_dataset import init_dataset_kwargs
# from transport.train_utils import parse_transport_args
from utils.infer_utils import remove_background, resize_foreground
SEED = 0
def resize_to_224(img):
img = transforms.functional.resize(img, 224,
interpolation=transforms.InterpolationMode.LANCZOS)
return img
def set_white_background(image):
image = np.array(image).astype(np.float32) / 255.0
mask = image[:, :, 3:4]
image = image[:, :, :3] * mask + (1 - mask)
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def main(args):
# args.rendering_kwargs = rendering_options_defaults(args)
# dist_util.setup_dist(args)
logger.configure(dir=args.logdir)
th.cuda.empty_cache()
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
# * set denoise model args
logger.log("creating model and diffusion...")
args.img_size = [args.image_size_encoder]
# ! no longer required for LDM
# args.denoise_in_channels = args.out_chans
# args.denoise_out_channels = args.out_chans
args.image_size = args.image_size_encoder # 224, follow the triplane size
denoise_model, diffusion = create_model_and_diffusion(
**args_to_dict(args,
model_and_diffusion_defaults().keys()))
# if 'cldm' in args.trainer_name:
# assert isinstance(denoise_model, tuple)
# denoise_model, controlNet = denoise_model
# controlNet.to(dist_util.dev())
# controlNet.train()
# else:
# controlNet = None
opts = eg3d_options_default()
if args.sr_training:
args.sr_kwargs = dnnlib.EasyDict(
channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True
) # ! close noise injection? since noise_mode='none' in eg3d
# denoise_model.load_state_dict(
# dist_util.load_state_dict(args.ddpm_model_path, map_location="cpu"))
denoise_model.to(dist_util.dev())
if args.use_fp16:
denoise_model.convert_to_fp16()
denoise_model.eval()
# * auto-encoder reconstruction model
logger.log("creating 3DAE...")
auto_encoder = create_3DAE_model(
**args_to_dict(args,
encoder_and_nsr_defaults().keys()))
auto_encoder.to(dist_util.dev())
auto_encoder.eval()
# TODO, how to set the scale?
logger.log("create dataset")
if args.objv_dataset:
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
else: # shapenet
from datasets.shapenet import load_data, load_eval_data, load_memory_data
# load data if i23d
if args.i23d:
data = load_eval_data(
file_path=args.eval_data_dir,
batch_size=args.eval_batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True, # for evaluation
preprocess=auto_encoder.preprocess,
**args_to_dict(args,
dataset_defaults().keys()))
else:
data = None # t23d sampling, only caption required
TrainLoop = {
'sgm_legacy':
nsr.lsgm.sgm_DiffusionEngine.DiffusionEngineLSGM,
'flow_matching':
nsr.lsgm.flow_matching_trainer.FlowMatchingEngine,
}[args.trainer_name]
# continuous
sde_diffusion = None
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs
training_loop_class = TrainLoop(rec_model=auto_encoder,
denoise_model=denoise_model,
control_model=None, # to remove
diffusion=diffusion,
sde_diffusion=sde_diffusion,
loss_class=None,
data=data,
eval_data=None,
**vars(args))
@spaces.GPU(duration=200)
def reconstruct_and_export(*args, **kwargs):
return training_loop_class.eval_i23d_and_export(*args, **kwargs)
css = """
h1 {
text-align: center;
display:block;
}
"""
def preprocess(input_image, preprocess_background=True, foreground_ratio=0.85):
if preprocess_background:
rembg_session = rembg.new_session()
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = set_white_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = set_white_background(image)
image = resize_to_224(image)
return image
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# LN3Diff (Scalable Latent Neural Fields Diffusion for Speedy 3D Generation)
**LN3Diff (ECCV 2024)** [[code](https://github.com/NIRVANALAN/LN3Diff), [project page](https://nirvanalan.github.io/projects/ln3diff/)] is a scalable 3D latent diffusion model that supports speedy 3D assets generation.
It first trains a 3D VAE on **Objaverse**, which compress each 3D asset into a compact 3D-aware latent. After that, a image/text-conditioned diffusion model is trained following LDM paradigm.
The model used in the demo adopts DiT-L/2 architecture and flow-matching framework, and supports single-image condition.
It is trained on 8 A100 GPUs for 1M iterations with batch size 256.
Locally, on an NVIDIA A100/A10 GPU, each image-conditioned diffusion generation can be done in 10~20 seconds (time varies due to the adaptive-step ODE solver used in flow-mathcing.)
Upload an image of an object or click on one of the provided examples to see how the LN3Diff works.
The 3D viewer will render a .obj object exported from the triplane, where the mesh resolution and iso-surface can be set manually.
For best results run the demo locally and render locally - to do so, clone the [main repository](https://github.com/NIRVANALAN/LN3Diff).
"""
)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(label="Processed Image", interactive=False)
# params
with gr.Row():
with gr.Column():
with gr.Row():
# with gr.Group():
unconditional_guidance_scale = gr.Number(
label="CFG-scale", value=4.0, interactive=True,
)
seed = gr.Number(
label="Seed", value=42, interactive=True,
)
num_steps = gr.Number(
label="ODE Sampling Steps", value=250, interactive=True,
)
# with gr.Column():
with gr.Row():
mesh_size = gr.Number(
label="Mesh Resolution", value=192, interactive=True,
)
mesh_thres = gr.Number(
label="Mesh Iso-surface", value=10, interactive=True,
)
with gr.Row():
with gr.Group():
preprocess_background = gr.Checkbox(
label="Remove Background", value=True
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
str(path) for path in sorted(Path('./assets/i23d_examples').glob('**/*.png'))
],
inputs=[input_image],
cache_examples=False,
label="Examples",
examples_per_page=20,
)
with gr.Column():
with gr.Row():
with gr.Tab("Reconstruction"):
with gr.Column():
output_video = gr.Video(value=None, width=384, label="Rendered Video", autoplay=True, loop=True)
output_model = gr.Model3D(
height=384,
clear_color=(1,1,1,1),
label="Output Model",
interactive=False
)
gr.Markdown(
"""
## Comments:
1. The sampling time varies since ODE-based sampling method (dopri5 by default) has adaptive internal step, and reducing sampling steps may not reduce the overal sampling time. Sampling steps=250 is the emperical value that works well in most cases.
2. The 3D viewer shows a colored .glb mesh extracted from volumetric tri-plane, and may differ slightly with the volume rendering result.
3. If you find your result unsatisfying, tune the CFG scale and change the random seed. Usually slightly increase the CFG value can lead to better performance.
3. Known limitations include:
- Texture details missing: since our VAE is trained on 192x192 resolution due the the resource constraints, the texture details generated by the final 3D-LDM may be blurry. We will keep improving the performance in the future.
4. Regarding reconstruction performance, our model is slightly inferior to state-of-the-art multi-view LRM-based method (e.g. InstantMesh), but offers much better diversity, flexibility and editing potential due to the intrinsic nature of diffusion model.
## How does it work?
LN3Diff is a feedforward 3D Latent Diffusion Model that supports direct 3D asset generation via diffusion sampling.
Compared to SDS-based ([DreamFusion](https://dreamfusion3d.github.io/)), mulit-view generation-based ([MVDream](https://arxiv.org/abs/2308.16512), [Zero123++](https://github.com/SUDO-AI-3D/zero123plus), [Instant3D](https://instant-3d.github.io/)) and feedforward 3D reconstruction-based ([LRM](https://yiconghong.me/LRM/), [InstantMesh](https://github.com/TencentARC/InstantMesh), [LGM](https://github.com/3DTopia/LGM)),
LN3Diff supports feedforward 3D generation with a unified framework.
Like 2D/Video AIGC pipeline, LN3Diff first trains a 3D-VAE and then conduct LDM training (text/image conditioned) on the learned latent space. Some related methods from the industry ([Shape-E](https://github.com/openai/shap-e), [CLAY](https://github.com/CLAY-3D/OpenCLAY), [Meta 3D Gen](https://arxiv.org/abs/2303.05371)) also follow the same paradigm.
Though currently the performance of the origin 3D LDM's works are overall inferior to reconstruction-based methods, we believe the proposed method has much potential and scales better with more data and compute resources, and may yield better 3D editing performance due to its compatability with diffusion model.
For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [ECCV article](https://arxiv.org/pdf/2403.12019).
"""
)
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, preprocess_background],
outputs=[processed_image],
).success(
# fn=reconstruct_and_export,
# inputs=[processed_image],
# outputs=[output_model, output_video],
fn=reconstruct_and_export,
inputs=[processed_image, num_steps, seed, mesh_size, mesh_thres, unconditional_guidance_scale],
outputs=[output_video, output_model],
)
demo.queue(max_size=1)
demo.launch(share=True)
# training_loop_class.eval_i23d_and_export(
# # prompt=args.prompt,
# # prompt=prompt,
# unconditional_guidance_scale=args.
# unconditional_guidance_scale,
# # unconditional_guidance_scale=unconditional_guidance_scale,
# # use_ddim=args.use_ddim,
# # save_img=args.save_img,
# # use_train_trajectory=args.use_train_trajectory,
# camera=camera,
# num_instances=args.num_instances,
# num_samples=args.num_samples,
# export_mesh=True,
# idx_to_render=seeds,
# )
# def create_argparser():
# defaults = dict(
# image_size_encoder=224,
# triplane_scaling_divider=1.0, # divide by this value
# diffusion_input_size=-1,
# trainer_name='adm',
# use_amp=False,
# # triplane_scaling_divider=1.0, # divide by this value
# # * sampling flags
# clip_denoised=False,
# num_samples=10,
# num_instances=10, # for i23d, loop different condition
# use_ddim=False,
# ddpm_model_path="",
# cldm_model_path="",
# rec_model_path="",
# # * eval logging flags
# logdir="/mnt/lustre/yslan/logs/nips23/",
# data_dir="",
# eval_data_dir="",
# eval_batch_size=1,
# num_workers=1,
# # * training flags for loading TrainingLoop class
# overfitting=False,
# image_size=128,
# iterations=150000,
# schedule_sampler="uniform",
# anneal_lr=False,
# lr=5e-5,
# weight_decay=0.0,
# lr_anneal_steps=0,
# batch_size=1,
# microbatch=-1, # -1 disables microbatches
# ema_rate="0.9999", # comma-separated list of EMA values
# log_interval=50,
# eval_interval=2500,
# save_interval=10000,
# resume_checkpoint="",
# resume_cldm_checkpoint="",
# resume_checkpoint_EG3D="",
# use_fp16=False,
# fp16_scale_growth=1e-3,
# load_submodule_name='', # for loading pretrained auto_encoder model
# ignore_resume_opt=False,
# freeze_ae=False,
# denoised_ae=True,
# # inference prompt
# prompt="a red chair",
# interval=1,
# save_img=False,
# use_train_trajectory=
# False, # use train trajectory to sample images for fid calculation
# unconditional_guidance_scale=1.0,
# use_eos_feature=False,
# export_mesh=False,
# cond_key='caption',
# allow_tf32=True,
# )
# defaults.update(model_and_diffusion_defaults())
# defaults.update(encoder_and_nsr_defaults()) # type: ignore
# defaults.update(loss_defaults())
# defaults.update(continuous_diffusion_defaults())
# defaults.update(control_net_defaults())
# defaults.update(dataset_defaults())
# parser = argparse.ArgumentParser()
# add_dict_to_argparser(parser, defaults)
# parse_transport_args(parser)
# return parser
if __name__ == "__main__":
# os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
# os.environ["NCCL_DEBUG"] = "INFO"
os.environ[
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
# args = create_argparser().parse_args()
# args.local_rank = int(os.environ["LOCAL_RANK"])
# args.gpus = th.cuda.device_count()
# args.rendering_kwargs = rendering_options_defaults(args)
with open('configs/i23d_args.json') as f:
args = json.load(f)
args = EasyDict(args)
args.local_rank = 0
args.gpus = 1
# ! demo
# zero = torch.Tensor([0]).cuda()
# print(zero.device) # <-- 'cpu' π€
# @spaces.GPU
# def greet(n):
# print(zero.device) # <-- 'cuda:0' π€
# return f"Hello {zero + n} Tensor"
# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
# demo.launch()
# true sampling loop
main(args) |