File size: 3,954 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import hashlib
import os

import requests
import torch
import torch.nn as nn
from tqdm import tqdm

URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"}

CKPT_MAP = {"vgg_lpips": "vgg.pth"}

MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"}


def download(url, local_path, chunk_size=1024):
    os.makedirs(os.path.split(local_path)[0], exist_ok=True)
    with requests.get(url, stream=True) as r:
        total_size = int(r.headers.get("content-length", 0))
        with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
            with open(local_path, "wb") as f:
                for data in r.iter_content(chunk_size=chunk_size):
                    if data:
                        f.write(data)
                        pbar.update(chunk_size)


def md5_hash(path):
    with open(path, "rb") as f:
        content = f.read()
    return hashlib.md5(content).hexdigest()


def get_ckpt_path(name, root, check=False):
    assert name in URL_MAP
    path = os.path.join(root, CKPT_MAP[name])
    if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
        print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
        download(URL_MAP[name], path)
        md5 = md5_hash(path)
        assert md5 == MD5_MAP[name], md5
    return path


class ActNorm(nn.Module):
    def __init__(
        self, num_features, logdet=False, affine=True, allow_reverse_init=False
    ):
        assert affine
        super().__init__()
        self.logdet = logdet
        self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
        self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
        self.allow_reverse_init = allow_reverse_init

        self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8))

    def initialize(self, input):
        with torch.no_grad():
            flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
            mean = (
                flatten.mean(1)
                .unsqueeze(1)
                .unsqueeze(2)
                .unsqueeze(3)
                .permute(1, 0, 2, 3)
            )
            std = (
                flatten.std(1)
                .unsqueeze(1)
                .unsqueeze(2)
                .unsqueeze(3)
                .permute(1, 0, 2, 3)
            )

            self.loc.data.copy_(-mean)
            self.scale.data.copy_(1 / (std + 1e-6))

    def forward(self, input, reverse=False):
        if reverse:
            return self.reverse(input)
        if len(input.shape) == 2:
            input = input[:, :, None, None]
            squeeze = True
        else:
            squeeze = False

        _, _, height, width = input.shape

        if self.training and self.initialized.item() == 0:
            self.initialize(input)
            self.initialized.fill_(1)

        h = self.scale * (input + self.loc)

        if squeeze:
            h = h.squeeze(-1).squeeze(-1)

        if self.logdet:
            log_abs = torch.log(torch.abs(self.scale))
            logdet = height * width * torch.sum(log_abs)
            logdet = logdet * torch.ones(input.shape[0]).to(input)
            return h, logdet

        return h

    def reverse(self, output):
        if self.training and self.initialized.item() == 0:
            if not self.allow_reverse_init:
                raise RuntimeError(
                    "Initializing ActNorm in reverse direction is "
                    "disabled by default. Use allow_reverse_init=True to enable."
                )
            else:
                self.initialize(output)
                self.initialized.fill_(1)

        if len(output.shape) == 2:
            output = output[:, :, None, None]
            squeeze = True
        else:
            squeeze = False

        h = output / self.scale - self.loc

        if squeeze:
            h = h.squeeze(-1).squeeze(-1)
        return h