File size: 3,940 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
set -x 
# vit_decoder_lr=1.001

# lpips_lambda=0.8
# lpips_lambda=2.0 # ! lrm
lpips_lambda=2.0
# lpips_lambda=0.0
ssim_lambda=0.
l1_lambda=0. # following gaussian splatting
l2_lambda=1 # ! use_conf_map

NUM_GPUS=1


image_size=192 # final rendered resolution

num_workers=3 # for eval only 
image_size_encoder=256
patch_size=14
kl_lambda=1.0e-06
patch_rendering_resolution=56 # 
batch_size=6 # 
microbatch=6 # 


# use g-buffer Objaverse data path here. check readme for more details.
data_dir='./assets/stage1_vae_reconstruction/Objaverse'


DATASET_FLAGS="
 --data_dir "NONE" \
 --eval_data_dir ${data_dir} \
"

conv_lr=2e-4
lr=1e-4 #

vit_decoder_lr=$lr
encoder_lr=${conv_lr} # scaling version , could be larger when multi-nodes
triplane_decoder_lr=$conv_lr
super_resolution_lr=$conv_lr

# * above the best lr config

LR_FLAGS="--encoder_lr $encoder_lr \
--vit_decoder_lr $vit_decoder_lr \
--triplane_decoder_lr $triplane_decoder_lr \
--super_resolution_lr $super_resolution_lr \
--lr $lr"

TRAIN_FLAGS="--iterations 10001 --anneal_lr False \
 --batch_size $batch_size --save_interval 10000 \
 --microbatch ${microbatch} \
 --image_size_encoder $image_size_encoder \
 --dino_version mv-sd-dit-dynaInp-trilatent \
 --sr_training False \
 --cls_token False \
 --weight_decay 0.05 \
 --image_size $image_size \
 --kl_lambda ${kl_lambda} \
 --no_dim_up_mlp True \
 --uvit_skip_encoder False \
 --fg_mse True \
 --bg_lamdba 1.0 \
 --lpips_delay_iter 100 \
 --sr_delay_iter 25000 \
 --kl_anneal True \
 --symmetry_loss False \
 --vae_p 2 \
 --plucker_embedding True \
 --encoder_in_channels 10 \
 --arch_dit_decoder DiT2-L/2 \
 --sd_E_ch 64 \
 --sd_E_num_res_blocks 1 \
 --lrm_decoder False \
 --resume_checkpoint checkpoints/objaverse/vae/model_rec1890000.pt \
 "

# the path to save the extracted latents.
# logdir="./logs/vae-reconstruction/objav/vae/infer-latents"
logdir="./logs/vae-reconstruction/objav/vae-xl/infer-latents"

SR_TRAIN_FLAGS_v1_2XC="
--decoder_in_chans 32 \
--out_chans 96 \
--alpha_lambda 1.0 \
--logdir $logdir \
--arch_encoder vits \
--arch_decoder vitb \
--vit_decoder_wd 0.001 \
--encoder_weight_decay 0.001 \
--color_criterion mse \
--decoder_output_dim 3 \
--ae_classname vit.vit_triplane.RodinSR_256_fusionv6_ConvQuant_liteSR_dinoInit3DAttn_SD_B_3L_C_withrollout_withSD_D_ditDecoder_S \
"

SR_TRAIN_FLAGS=${SR_TRAIN_FLAGS_v1_2XC}


rm -rf "$logdir"/runs
mkdir -p "$logdir"/
cp "$0" "$logdir"/

# localedef -c -f UTF-8 -i en_US en_US.UTF-8
export LC_ALL=en_US.UTF-8

export OPENCV_IO_ENABLE_OPENEXR=1
export OMP_NUM_THREADS=12
export TORCH_NCCL_ASYNC_ERROR_HANDLING=1
export TORCH_NCCL_IB_GID_INDEX=3 # https://github.com/huggingface/accelerate/issues/314#issuecomment-1821973930
export CUDA_VISIBLE_DEVICES=1


torchrun --nproc_per_node=$NUM_GPUS \
  --nnodes=1 \
  --rdzv-endpoint=${HOST_NODE_ADDR} \
  --rdzv_backend=c10d \
 scripts/vit_triplane_train.py \
 --trainer_name nv_rec_patch_mvE \
 --num_workers ${num_workers} \
 ${TRAIN_FLAGS}  \
 ${SR_TRAIN_FLAGS} \
 ${DATASET_FLAGS} \
 --lpips_lambda $lpips_lambda \
 --overfitting False \
 --load_pretrain_encoder False \
 --iterations 5000001 \
 --save_interval 10000 \
 --eval_interval 250000000 \
 --decomposed True \
 --logdir $logdir \
 --decoder_load_pretrained False \
 --cfg objverse_tuneray_aug_resolution_96_96_auto \
 --patch_size ${patch_size} \
 --use_amp False \
 --eval_batch_size $batch_size \
 ${LR_FLAGS} \
 --l1_lambda ${l1_lambda} \
 --l2_lambda ${l2_lambda} \
 --ssim_lambda ${ssim_lambda} \
 --depth_smoothness_lambda 0 \
 --use_conf_map False \
 --objv_dataset True \
 --depth_lambda 0.5 \
 --patch_rendering_resolution ${patch_rendering_resolution} \
 --use_lmdb_compressed False \
 --use_lmdb False \
 --mv_input True \
 --inference True \
 --split_chunk_input False \
 --use_wds False \
 --four_view_for_latent True \
 --num_frames 6 \
 --split_chunk_size 12 \
 --append_depth True \
 --save_latent True \
 --shuffle_across_cls True \