Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,014 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
import argparse
import inspect
from pdb import set_trace as st
from cldm.cldm import ControlledUnetModel, ControlNet
from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps
# from .unet_old import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint
from .unet import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint
import torch as th
# from dit.dit_models_xformers import DiT_models
# from dit.dit_models_xformers import TextCondDiTBlock
from dit.dit_models_xformers import TextCondDiTBlock, ImageCondDiTBlock, FinalLayer
from dit.dit_trilatent import DiT_models as DiT_models_t23d
from dit.dit_i23d import DiT_models as DiT_models_i23d
if th.cuda.is_available():
from xformers.triton import FusedLayerNorm as LayerNorm
NUM_CLASSES = 1000
def diffusion_defaults():
"""
Defaults for image and classifier training.
"""
return dict(
learn_sigma=False,
diffusion_steps=1000,
noise_schedule="linear",
standarization_xt=False,
timestep_respacing="",
use_kl=False,
predict_xstart=False,
predict_v=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
mixed_prediction=False, # ! to assign later
)
def classifier_defaults():
"""
Defaults for classifier models.
"""
return dict(
image_size=64,
classifier_use_fp16=False,
classifier_width=128,
classifier_depth=2,
classifier_attention_resolutions="32,16,8", # 16
classifier_use_scale_shift_norm=True, # False
classifier_resblock_updown=True, # False
classifier_pool="attention",
)
def control_net_defaults():
res = dict(
only_mid_control=False, # TODO
control_key='img',
normalize_clip_encoding=False, # zero-shot text inference
scale_clip_encoding=1.0,
cfg_dropout_prob=0.0, # dropout condition for CFG training
# cond_key='caption',
)
return res
def continuous_diffusion_defaults():
# NVlabs/LSGM/train_vada.py
res = dict(
sde_time_eps=1e-2,
sde_beta_start=0.1,
sde_beta_end=20.0,
sde_sde_type='vpsde',
sde_sigma2_0=0.0, # ?
iw_sample_p='drop_sigma2t_iw',
iw_sample_q='ll_iw',
iw_subvp_like_vp_sde=False,
train_vae=True,
pred_type='eps', # [x0, eps]
# joint_train=False,
p_rendering_loss=False,
unfix_logit=False,
loss_type='eps',
loss_weight='simple', # snr snr_sqrt sigmoid_snr
# train_vae_denoise_rendering=False,
diffusion_ce_anneal=True,
enable_mixing_normal=True,
)
return res
def model_and_diffusion_defaults():
"""
Defaults for image training.
"""
res = dict(
# image_size=64,
diffusion_input_size=224,
num_channels=128,
num_res_blocks=2,
num_heads=4,
num_heads_upsample=-1,
num_head_channels=-1,
attention_resolutions="16,8",
channel_mult="",
dropout=0.0,
class_cond=False,
use_checkpoint=False,
use_scale_shift_norm=True,
resblock_updown=False,
use_fp16=False,
use_new_attention_order=False,
denoise_in_channels=3,
denoise_out_channels=3,
# ! controlnet args
create_controlnet=False,
create_dit=False,
i23d=False,
create_unet_with_hint=False,
dit_model_arch='DiT-L/2',
# ! ldm unet support
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=-1, # custom transformer support
pooling_ctx_dim=768, # custom transformer support
roll_out=False, # whether concat in batch, not channel
n_embed=
None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
mixing_logit_init=-6,
hint_channels=3,
# unconditional_guidance_scale=1.0,
# normalize_clip_encoding=False, # for zero-shot conditioning
)
res.update(diffusion_defaults())
# res.update(continuous_diffusion_defaults())
return res
def classifier_and_diffusion_defaults():
res = classifier_defaults()
res.update(diffusion_defaults())
return res
def create_model_and_diffusion(
# image_size,
diffusion_input_size,
class_cond,
learn_sigma,
num_channels,
num_res_blocks,
channel_mult,
num_heads,
num_head_channels,
num_heads_upsample,
attention_resolutions,
dropout,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
predict_v,
rescale_timesteps,
rescale_learned_sigmas,
use_checkpoint,
use_scale_shift_norm,
resblock_updown,
use_fp16,
use_new_attention_order,
denoise_in_channels,
denoise_out_channels,
standarization_xt,
mixed_prediction,
# controlnet
create_controlnet,
# only_mid_control,
# control_key,
use_spatial_transformer,
transformer_depth,
context_dim,
pooling_ctx_dim,
n_embed,
legacy,
mixing_logit_init,
create_dit,
i23d,
create_unet_with_hint,
dit_model_arch,
roll_out,
hint_channels,
# unconditional_guidance_scale,
# normalize_clip_encoding,
):
model = create_model(
diffusion_input_size,
num_channels,
num_res_blocks,
channel_mult=channel_mult,
learn_sigma=learn_sigma,
class_cond=class_cond,
use_checkpoint=use_checkpoint,
attention_resolutions=attention_resolutions,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
dropout=dropout,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
use_new_attention_order=use_new_attention_order,
denoise_in_channels=denoise_in_channels,
denoise_out_channels=denoise_out_channels,
mixed_prediction=mixed_prediction,
create_controlnet=create_controlnet,
# only_mid_control=only_mid_control,
# control_key=control_key,
use_spatial_transformer=use_spatial_transformer,
transformer_depth=transformer_depth,
context_dim=context_dim,
pooling_ctx_dim=pooling_ctx_dim,
n_embed=n_embed,
legacy=legacy,
mixing_logit_init=mixing_logit_init,
create_dit=create_dit,
i23d=i23d,
create_unet_with_hint=create_unet_with_hint,
dit_model_arch=dit_model_arch,
roll_out=roll_out,
hint_channels=hint_channels,
# normalize_clip_encoding=normalize_clip_encoding,
)
diffusion = create_gaussian_diffusion(
diffusion_steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
predict_v=predict_v,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
standarization_xt=standarization_xt,
)
return model, diffusion
def create_model(
image_size,
num_channels,
num_res_blocks,
channel_mult="",
learn_sigma=False,
class_cond=False,
use_checkpoint=False,
attention_resolutions="16",
num_heads=1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
dropout=0,
resblock_updown=False,
use_fp16=False,
use_new_attention_order=False,
# denoise_in_channels=3,
denoise_in_channels=-1,
denoise_out_channels=3,
mixed_prediction=False,
create_controlnet=False,
create_dit=False,
i23d=False,
create_unet_with_hint=False,
dit_model_arch='DiT-L/2',
hint_channels=3,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
pooling_ctx_dim=-1,
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
mixing_logit_init=-6,
roll_out=False,
# normalize_clip_encoding=False,
):
if channel_mult == "":
if image_size == 512:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 448:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 320: # ffhq
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 224 and denoise_in_channels == 144: # ffhq
channel_mult = (1, 1, 2, 3, 4, 4)
elif image_size == 224:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
elif image_size == 32: # https://github.com/CompVis/latent-diffusion/blob/a506df5756472e2ebaf9078affdde2c4f1502cd4/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml#L37
channel_mult = (1, 2, 4, 4)
elif image_size == 16: # B,12,16,16. just for baseline check. not good performance.
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
else:
channel_mult = tuple(
int(ch_mult) for ch_mult in channel_mult.split(","))
attention_ds = []
for res in attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
if create_controlnet:
controlledUnetModel = ControlledUnetModel(
image_size=image_size,
in_channels=denoise_in_channels,
model_channels=num_channels,
# out_channels=(3 if not learn_sigma else 6),
out_channels=(denoise_out_channels
if not learn_sigma else denoise_out_channels * 2),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
use_fp16=use_fp16,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
mixed_prediction=mixed_prediction,
# ldm support
use_spatial_transformer=use_spatial_transformer,
transformer_depth=transformer_depth,
context_dim=context_dim,
pooling_ctx_dim=pooling_ctx_dim,
n_embed=n_embed,
legacy=legacy,
mixing_logit_init=mixing_logit_init,
roll_out=roll_out
)
controlNet = ControlNet(
image_size=image_size,
in_channels=denoise_in_channels,
model_channels=num_channels,
# ! condition channels
hint_channels=hint_channels,
# out_channels=(3 if not learn_sigma else 6),
# out_channels=(denoise_out_channels
# if not learn_sigma else denoise_out_channels * 2),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
# num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
use_fp16=use_fp16,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
roll_out=roll_out
)
# mixed_prediction=mixed_prediction)
return controlledUnetModel, controlNet
elif create_dit:
# return DiT_models[dit_model_arch](
# input_size=image_size,
# num_classes=0,
# learn_sigma=learn_sigma,
# in_channels=denoise_in_channels,
# context_dim=context_dim, # add CLIP text embedding
# roll_out=roll_out,
# vit_blk=TextCondDiTBlock)
if i23d:
return DiT_models_i23d[dit_model_arch](
input_size=image_size,
num_classes=0,
learn_sigma=learn_sigma,
in_channels=denoise_in_channels,
context_dim=context_dim, # add CLIP text embedding
roll_out=roll_out,
# vit_blk=ImageCondDiTBlock,
pooling_ctx_dim=pooling_ctx_dim,)
else: # t23d
return DiT_models_t23d[dit_model_arch](
input_size=image_size,
num_classes=0,
learn_sigma=learn_sigma,
in_channels=denoise_in_channels,
context_dim=context_dim, # add CLIP text embedding
roll_out=roll_out,
vit_blk=TextCondDiTBlock)
else:
# if create_unet_with_hint:
# unet_cls = UNetModelWithHint
# else:
unet_cls = UNetModel
# st()
return unet_cls(
image_size=image_size,
in_channels=denoise_in_channels,
model_channels=num_channels,
# out_channels=(3 if not learn_sigma else 6),
out_channels=(denoise_out_channels
if not learn_sigma else denoise_out_channels * 2),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
use_fp16=use_fp16,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
mixed_prediction=mixed_prediction,
# ldm support
use_spatial_transformer=use_spatial_transformer,
transformer_depth=transformer_depth,
context_dim=context_dim,
n_embed=n_embed,
legacy=legacy,
mixing_logit_init=mixing_logit_init,
roll_out=roll_out,
hint_channels=hint_channels,
# normalize_clip_encoding=normalize_clip_encoding,
)
def create_classifier_and_diffusion(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
learn_sigma,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
):
classifier = create_classifier(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return classifier, diffusion
def create_classifier(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
):
if image_size == 512:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
attention_ds = []
for res in classifier_attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
return EncoderUNetModel(
image_size=image_size,
in_channels=3,
model_channels=classifier_width,
out_channels=1000,
num_res_blocks=classifier_depth,
attention_resolutions=tuple(attention_ds),
channel_mult=channel_mult,
use_fp16=classifier_use_fp16,
num_head_channels=64,
use_scale_shift_norm=classifier_use_scale_shift_norm,
resblock_updown=classifier_resblock_updown,
pool=classifier_pool,
)
def sr_model_and_diffusion_defaults():
res = model_and_diffusion_defaults()
res["large_size"] = 256
res["small_size"] = 64
arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
for k in res.copy().keys():
if k not in arg_names:
del res[k]
return res
def sr_create_model_and_diffusion(
large_size,
small_size,
class_cond,
learn_sigma,
num_channels,
num_res_blocks,
num_heads,
num_head_channels,
num_heads_upsample,
attention_resolutions,
dropout,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
use_checkpoint,
use_scale_shift_norm,
resblock_updown,
use_fp16,
):
model = sr_create_model(
large_size,
small_size,
num_channels,
num_res_blocks,
learn_sigma=learn_sigma,
class_cond=class_cond,
use_checkpoint=use_checkpoint,
attention_resolutions=attention_resolutions,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
dropout=dropout,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return model, diffusion
def sr_create_model(
large_size,
small_size,
num_channels,
num_res_blocks,
learn_sigma,
class_cond,
use_checkpoint,
attention_resolutions,
num_heads,
num_head_channels,
num_heads_upsample,
use_scale_shift_norm,
dropout,
resblock_updown,
use_fp16,
):
_ = small_size # hack to prevent unused variable
if large_size == 512:
channel_mult = (1, 1, 2, 2, 4, 4)
elif large_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif large_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported large size: {large_size}")
attention_ds = []
for res in attention_resolutions.split(","):
attention_ds.append(large_size // int(res))
return SuperResModel(
image_size=large_size,
in_channels=3,
model_channels=num_channels,
out_channels=(3 if not learn_sigma else 6),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
)
def create_gaussian_diffusion(
*,
diffusion_steps=1000,
learn_sigma=False,
sigma_small=False,
noise_schedule="linear",
use_kl=False,
predict_xstart=False,
predict_v=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
timestep_respacing="",
standarization_xt=False,
):
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
if use_kl:
loss_type = gd.LossType.RESCALED_KL
elif rescale_learned_sigmas:
loss_type = gd.LossType.RESCALED_MSE
else:
loss_type = gd.LossType.MSE # * used here.
if not timestep_respacing:
timestep_respacing = [diffusion_steps]
if predict_xstart:
model_mean_type = gd.ModelMeanType.START_X
elif predict_v:
model_mean_type = gd.ModelMeanType.V
else:
model_mean_type = gd.ModelMeanType.EPSILON
# model_mean_type=(
# gd.ModelMeanType.EPSILON if not predict_xstart else
# gd.ModelMeanType.START_X # * used gd.ModelMeanType.EPSILON
# ),
return SpacedDiffusion(
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
betas=betas,
model_mean_type=model_mean_type,
# (
# gd.ModelMeanType.EPSILON if not predict_xstart else
# gd.ModelMeanType.START_X # * used gd.ModelMeanType.EPSILON
# ),
model_var_type=((
gd.ModelVarType.FIXED_LARGE # * used here
if not sigma_small else gd.ModelVarType.FIXED_SMALL)
if not learn_sigma else gd.ModelVarType.LEARNED_RANGE),
loss_type=loss_type,
rescale_timesteps=rescale_timesteps,
standarization_xt=standarization_xt,
)
def add_dict_to_argparser(parser, default_dict):
for k, v in default_dict.items():
v_type = type(v)
if v is None:
v_type = str
elif isinstance(v, bool):
v_type = str2bool
parser.add_argument(f"--{k}", default=v, type=v_type)
def args_to_dict(args, keys):
return {k: getattr(args, k) for k in keys}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")
|