Spaces:
Running
on
Zero
Running
on
Zero
File size: 57,595 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
import math
import random
import kiui
from kiui.op import recenter
import torchvision
import torchvision.transforms.v2
from contextlib import nullcontext
from functools import partial
from typing import Dict, List, Optional, Tuple, Union
from pdb import set_trace as st
import kornia
import numpy as np
import open_clip
import torch
import torch.nn as nn
from einops import rearrange, repeat
from omegaconf import ListConfig
from torch.utils.checkpoint import checkpoint
from transformers import (ByT5Tokenizer, CLIPTextModel, CLIPTokenizer,
T5EncoderModel, T5Tokenizer)
from ...modules.autoencoding.regularizers import DiagonalGaussianRegularizer
from ...modules.diffusionmodules.model import Encoder
from ...modules.diffusionmodules.openaimodel import Timestep
from ...modules.diffusionmodules.util import (extract_into_tensor,
make_beta_schedule)
from ...modules.distributions.distributions import DiagonalGaussianDistribution
from ...util import (append_dims, autocast, count_params, default,
disabled_train, expand_dims_like, instantiate_from_config)
from dit.dit_models_xformers import CaptionEmbedder, approx_gelu, t2i_modulate
class AbstractEmbModel(nn.Module):
def __init__(self):
super().__init__()
self._is_trainable = None
self._ucg_rate = None
self._input_key = None
@property
def is_trainable(self) -> bool:
return self._is_trainable
@property
def ucg_rate(self) -> Union[float, torch.Tensor]:
return self._ucg_rate
@property
def input_key(self) -> str:
return self._input_key
@is_trainable.setter
def is_trainable(self, value: bool):
self._is_trainable = value
@ucg_rate.setter
def ucg_rate(self, value: Union[float, torch.Tensor]):
self._ucg_rate = value
@input_key.setter
def input_key(self, value: str):
self._input_key = value
@is_trainable.deleter
def is_trainable(self):
del self._is_trainable
@ucg_rate.deleter
def ucg_rate(self):
del self._ucg_rate
@input_key.deleter
def input_key(self):
del self._input_key
class GeneralConditioner(nn.Module):
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
def __init__(self, emb_models: Union[List, ListConfig]):
super().__init__()
embedders = []
for n, embconfig in enumerate(emb_models):
embedder = instantiate_from_config(embconfig)
assert isinstance(
embedder, AbstractEmbModel
), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel"
embedder.is_trainable = embconfig.get("is_trainable", False)
embedder.ucg_rate = embconfig.get("ucg_rate", 0.0)
if not embedder.is_trainable:
embedder.train = disabled_train
for param in embedder.parameters():
param.requires_grad = False
embedder.eval()
print(
f"Initialized embedder #{n}: {embedder.__class__.__name__} "
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
)
if "input_key" in embconfig:
embedder.input_key = embconfig["input_key"]
elif "input_keys" in embconfig:
embedder.input_keys = embconfig["input_keys"]
else:
raise KeyError(
f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}"
)
embedder.legacy_ucg_val = embconfig.get("legacy_ucg_value", None)
if embedder.legacy_ucg_val is not None:
embedder.ucg_prng = np.random.RandomState()
embedders.append(embedder)
self.embedders = nn.ModuleList(embedders)
def possibly_get_ucg_val(self, embedder: AbstractEmbModel,
batch: Dict) -> Dict:
assert embedder.legacy_ucg_val is not None
p = embedder.ucg_rate
val = embedder.legacy_ucg_val
for i in range(len(batch[embedder.input_key])):
if embedder.ucg_prng.choice(2, p=[1 - p, p]):
batch[embedder.input_key][i] = val
return batch
def forward(self,
batch: Dict,
force_zero_embeddings: Optional[List] = None) -> Dict:
output = dict()
if force_zero_embeddings is None:
force_zero_embeddings = []
for embedder in self.embedders:
embedding_context = nullcontext if embedder.is_trainable else torch.no_grad
with embedding_context():
if hasattr(embedder, "input_key") and (embedder.input_key
is not None):
if embedder.legacy_ucg_val is not None:
batch = self.possibly_get_ucg_val(embedder, batch)
emb_out = embedder(batch[embedder.input_key])
elif hasattr(embedder, "input_keys"):
emb_out = embedder(
*[batch[k] for k in embedder.input_keys])
assert isinstance(
emb_out, (torch.Tensor, list, tuple)
), f"encoder outputs must be tensors or a sequence, but got {type(emb_out)}"
if not isinstance(emb_out, (list, tuple)):
emb_out = [emb_out]
for emb in emb_out:
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
emb = (expand_dims_like(
torch.bernoulli(
(1.0 - embedder.ucg_rate) *
torch.ones(emb.shape[0], device=emb.device)),
emb,
) * emb)
if (hasattr(embedder, "input_key")
and embedder.input_key in force_zero_embeddings):
emb = torch.zeros_like(emb)
if out_key in output:
output[out_key] = torch.cat((output[out_key], emb),
self.KEY2CATDIM[out_key])
else:
output[out_key] = emb
return output
def get_unconditional_conditioning(
self,
batch_c: Dict,
batch_uc: Optional[Dict] = None,
force_uc_zero_embeddings: Optional[List[str]] = None,
force_cond_zero_embeddings: Optional[List[str]] = None,
):
if force_uc_zero_embeddings is None:
force_uc_zero_embeddings = []
ucg_rates = list()
for embedder in self.embedders:
ucg_rates.append(embedder.ucg_rate)
embedder.ucg_rate = 0.0 # ! force no drop during inference
c = self(batch_c, force_cond_zero_embeddings)
uc = self(batch_c if batch_uc is None else batch_uc,
force_uc_zero_embeddings)
for embedder, rate in zip(self.embedders, ucg_rates):
embedder.ucg_rate = rate
return c, uc
class InceptionV3(nn.Module):
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
port with an additional squeeze at the end"""
def __init__(self, normalize_input=False, **kwargs):
super().__init__()
from pytorch_fid import inception
kwargs["resize_input"] = True
self.model = inception.InceptionV3(normalize_input=normalize_input,
**kwargs)
def forward(self, inp):
outp = self.model(inp)
if len(outp) == 1:
return outp[0].squeeze()
return outp
class IdentityEncoder(AbstractEmbModel):
def encode(self, x):
return x
def forward(self, x):
return x
class ClassEmbedder(AbstractEmbModel):
def __init__(self, embed_dim, n_classes=1000, add_sequence_dim=False):
super().__init__()
self.embedding = nn.Embedding(n_classes, embed_dim)
self.n_classes = n_classes
self.add_sequence_dim = add_sequence_dim
def forward(self, c):
c = self.embedding(c)
if self.add_sequence_dim:
c = c[:, None, :]
return c
def get_unconditional_conditioning(self, bs, device="cuda"):
uc_class = (
self.n_classes - 1
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
uc = torch.ones((bs, ), device=device) * uc_class
uc = {self.key: uc.long()}
return uc
class ClassEmbedderForMultiCond(ClassEmbedder):
def forward(self, batch, key=None, disable_dropout=False):
out = batch
key = default(key, self.key)
islist = isinstance(batch[key], list)
if islist:
batch[key] = batch[key][0]
c_out = super().forward(batch, key, disable_dropout)
out[key] = [c_out] if islist else c_out
return out
class FrozenT5Embedder(AbstractEmbModel):
"""Uses the T5 transformer encoder for text"""
def __init__(self,
version="google/t5-v1_1-xxl",
device="cuda",
max_length=77,
freeze=True
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
with torch.autocast("cuda", enabled=False):
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenByT5Embedder(AbstractEmbModel):
"""
Uses the ByT5 transformer encoder for text. Is character-aware.
"""
def __init__(self,
version="google/byt5-base",
device="cuda",
max_length=77,
freeze=True
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = ByT5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
with torch.autocast("cuda", enabled=False):
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLIPEmbedder(AbstractEmbModel):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = ["last", "pooled", "hidden"]
def __init__(
self,
version="openai/clip-vit-large-patch14",
device="cuda",
max_length=77,
freeze=True,
layer="last",
layer_idx=None,
always_return_pooled=False,
): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
self.return_pooled = always_return_pooled
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
@autocast
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens,
output_hidden_states=self.layer == "hidden")
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
if self.return_pooled:
return z, outputs.pooler_output
return z
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder2(AbstractEmbModel):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = ["pooled", "last", "penultimate"]
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device="cuda",
max_length=77,
freeze=True,
layer="last",
always_return_pooled=False,
legacy=True,
):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(
arch,
device=torch.device("cpu"),
pretrained=version,
)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
self.return_pooled = always_return_pooled
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
self.legacy = legacy
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
@autocast
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
if not self.return_pooled and self.legacy:
return z
if self.return_pooled:
assert not self.legacy
return z[self.layer], z["pooled"]
return z[self.layer]
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
if self.legacy:
x = x[self.layer]
x = self.model.ln_final(x)
return x
else:
# x is a dict and will stay a dict
o = x["last"]
o = self.model.ln_final(o)
pooled = self.pool(o, text)
x["pooled"] = pooled
return x
def pool(self, x, text):
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = (x[torch.arange(x.shape[0]),
text.argmax(dim=-1)] @ self.model.text_projection)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
outputs = {}
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - 1:
outputs["penultimate"] = x.permute(1, 0, 2) # LND -> NLD
if (self.model.transformer.grad_checkpointing
and not torch.jit.is_scripting()):
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
outputs["last"] = x.permute(1, 0, 2) # LND -> NLD
return outputs
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder(AbstractEmbModel):
LAYERS = [
# "pooled",
"last",
"penultimate",
]
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device="cuda",
max_length=77,
freeze=True,
layer="last",
):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(
arch, device=torch.device("cpu"), pretrained=version)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if (self.model.transformer.grad_checkpointing
and not torch.jit.is_scripting()):
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
"""
Uses the OpenCLIP vision transformer encoder for images
"""
def __init__(
self,
# arch="ViT-H-14",
# version="laion2b_s32b_b79k",
arch="ViT-L-14",
# version="laion2b_s32b_b82k",
version="openai",
device="cuda",
max_length=77,
freeze=True,
antialias=True,
ucg_rate=0.0,
unsqueeze_dim=False,
repeat_to_max_len=False,
num_image_crops=0,
output_tokens=False,
init_device=None,
):
super().__init__()
model, _, _ = open_clip.create_model_and_transforms(
arch,
device=torch.device(default(init_device, "cpu")),
pretrained=version,
)
del model.transformer
self.model = model
self.max_crops = num_image_crops
self.pad_to_max_len = self.max_crops > 0
self.repeat_to_max_len = repeat_to_max_len and (
not self.pad_to_max_len)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.antialias = antialias
self.register_buffer("mean",
torch.Tensor([0.48145466, 0.4578275, 0.40821073]),
persistent=False)
self.register_buffer("std",
torch.Tensor([0.26862954, 0.26130258,
0.27577711]),
persistent=False)
self.ucg_rate = ucg_rate
self.unsqueeze_dim = unsqueeze_dim
self.stored_batch = None
self.model.visual.output_tokens = output_tokens
self.output_tokens = output_tokens
def preprocess(self, x):
# normalize to [0,1]
x = kornia.geometry.resize(
x,
(224, 224),
interpolation="bicubic",
align_corners=True,
antialias=self.antialias,
)
x = (x + 1.0) / 2.0
# renormalize according to clip
x = kornia.enhance.normalize(x, self.mean, self.std)
return x
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
@autocast
def forward(self, image, no_dropout=False):
z = self.encode_with_vision_transformer(image)
tokens = None
if self.output_tokens:
z, tokens = z[0], z[1]
z = z.to(image.dtype)
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
z = (torch.bernoulli(
(1.0 - self.ucg_rate) *
torch.ones(z.shape[0], device=z.device))[:, None] * z)
if tokens is not None:
tokens = (expand_dims_like(
torch.bernoulli(
(1.0 - self.ucg_rate) *
torch.ones(tokens.shape[0], device=tokens.device)),
tokens,
) * tokens)
if self.unsqueeze_dim:
z = z[:, None, :]
if self.output_tokens:
assert not self.repeat_to_max_len
assert not self.pad_to_max_len
return tokens, z
if self.repeat_to_max_len:
if z.dim() == 2:
z_ = z[:, None, :]
else:
z_ = z
return repeat(z_, "b 1 d -> b n d", n=self.max_length), z
elif self.pad_to_max_len:
assert z.dim() == 3
z_pad = torch.cat(
(
z,
torch.zeros(
z.shape[0],
self.max_length - z.shape[1],
z.shape[2],
device=z.device,
),
),
1,
)
return z_pad, z_pad[:, 0, ...]
return z
def encode_with_vision_transformer(self, img):
# if self.max_crops > 0:
# img = self.preprocess_by_cropping(img)
if img.dim() == 5:
assert self.max_crops == img.shape[1]
img = rearrange(img, "b n c h w -> (b n) c h w")
img = self.preprocess(img)
if not self.output_tokens:
assert not self.model.visual.output_tokens
x = self.model.visual(img)
tokens = None
else:
assert self.model.visual.output_tokens
x, tokens = self.model.visual(img)
if self.max_crops > 0:
x = rearrange(x, "(b n) d -> b n d", n=self.max_crops)
# drop out between 0 and all along the sequence axis
x = (torch.bernoulli(
(1.0 - self.ucg_rate) *
torch.ones(x.shape[0], x.shape[1], 1, device=x.device)) * x)
if tokens is not None:
tokens = rearrange(tokens,
"(b n) t d -> b t (n d)",
n=self.max_crops)
print(
f"You are running very experimental token-concat in {self.__class__.__name__}. "
f"Check what you are doing, and then remove this message.")
if self.output_tokens:
return x, tokens
return x
def encode(self, text):
return self(text)
# dino-v2 embedder
class FrozenDinov2ImageEmbedder(AbstractEmbModel):
"""
Uses the Dino-v2 for low-level image embedding
"""
def __init__(
self,
arch="vitl",
version="dinov2", # by default
device="cuda",
max_length=77,
freeze=True,
antialias=True,
ucg_rate=0.0,
unsqueeze_dim=False,
repeat_to_max_len=False,
num_image_crops=0,
output_tokens=False,
output_cls=False,
init_device=None,
):
super().__init__()
self.model = torch.hub.load(
f'facebookresearch/{version}',
'{}_{}{}_reg'.format(
version, f'{arch}', '14'
), # with registers better performance. vitl and vitg similar. Since fixed, load the best one.
pretrained=True).to(torch.device(default(init_device, "cpu")))
# ! frozen
# self.tokenizer.requires_grad_(False)
# self.tokenizer.eval()
# assert freeze # add adaLN here
if freeze:
self.freeze()
# self.model = model
self.max_crops = num_image_crops
self.pad_to_max_len = self.max_crops > 0
self.repeat_to_max_len = repeat_to_max_len and (
not self.pad_to_max_len)
self.device = device
self.max_length = max_length
self.antialias = antialias
# https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/data/transforms.py#L41
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
self.register_buffer("mean",
torch.Tensor(IMAGENET_DEFAULT_MEAN),
persistent=False)
self.register_buffer("std",
torch.Tensor(IMAGENET_DEFAULT_STD),
persistent=False)
self.ucg_rate = ucg_rate
self.unsqueeze_dim = unsqueeze_dim
self.stored_batch = None
# self.model.visual.output_tokens = output_tokens
self.output_tokens = output_tokens # output
self.output_cls = output_cls
# self.output_tokens = False
def preprocess(self, x):
# normalize to [0,1]
x = kornia.geometry.resize(
x,
(224, 224),
interpolation="bicubic",
align_corners=True,
antialias=self.antialias,
)
x = (x + 1.0) / 2.0
# renormalize according to clip
x = kornia.enhance.normalize(x, self.mean, self.std)
return x
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def _model_forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def encode_with_vision_transformer(self, img, **kwargs):
# if self.max_crops > 0:
# img = self.preprocess_by_cropping(img)
if img.dim() == 5:
# assert self.max_crops == img.shape[1]
img = rearrange(img, "b n c h w -> (b n) c h w")
img = self.preprocess(img)
# https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L326
if not self.output_cls:
return self._model_forward(
img, is_training=True,
**kwargs)['x_norm_patchtokens'] # to return spatial tokens
else:
dino_ret_dict = self._model_forward(
img, is_training=True) # to return spatial tokens
x_patchtokens, x_norm_clstoken = dino_ret_dict[
'x_norm_patchtokens'], dino_ret_dict['x_norm_clstoken']
return x_norm_clstoken, x_patchtokens
@autocast
def forward(self, image, no_dropout=False, **kwargs):
tokens = self.encode_with_vision_transformer(image, **kwargs)
z = None
if self.output_cls:
z, tokens = z[0], z[1]
z = z.to(image.dtype)
tokens = tokens.to(image.dtype) # ! return spatial tokens only
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
if z is not None:
z = (torch.bernoulli(
(1.0 - self.ucg_rate) *
torch.ones(z.shape[0], device=z.device))[:, None] * z)
tokens = (expand_dims_like(
torch.bernoulli(
(1.0 - self.ucg_rate) *
torch.ones(tokens.shape[0], device=tokens.device)),
tokens,
) * tokens)
if self.output_cls:
return tokens, z
else:
return tokens
class FrozenDinov2ImageEmbedderMVPlucker(FrozenDinov2ImageEmbedder):
def __init__(
self,
arch="vitl",
version="dinov2", # by default
device="cuda",
max_length=77,
freeze=True,
antialias=True,
ucg_rate=0.0,
unsqueeze_dim=False,
repeat_to_max_len=False,
num_image_crops=0,
output_tokens=False,
output_cls=False,
init_device=None,
# mv cond settings
n_cond_frames=4, # numebr of condition views
enable_bf16=False,
modLN=False,
aug_c=False,
):
super().__init__(
arch,
version,
device,
max_length,
freeze,
antialias,
ucg_rate,
unsqueeze_dim,
repeat_to_max_len,
num_image_crops,
output_tokens,
output_cls,
init_device,
)
self.n_cond_frames = n_cond_frames
self.dtype = torch.bfloat16 if enable_bf16 else torch.float32
self.enable_bf16 = enable_bf16
self.aug_c = aug_c
# ! proj c_cond to features
self.reso_encoder = 224
orig_patch_embed_weight = self.model.patch_embed.state_dict()
# ! 9-d input
with torch.no_grad():
new_patch_embed = PatchEmbed(img_size=224,
patch_size=14,
in_chans=9,
embed_dim=self.model.embed_dim)
# zero init first
nn.init.constant_(new_patch_embed.proj.weight, 0)
nn.init.constant_(new_patch_embed.proj.bias, 0)
# load pre-trained first 3 layers weights, bias into the new patch_embed
new_patch_embed.proj.weight[:, :3].copy_(orig_patch_embed_weight['proj.weight'])
new_patch_embed.proj.bias[:].copy_(orig_patch_embed_weight['proj.bias'])
self.model.patch_embed = new_patch_embed # xyz in the front
# self.scale_jitter_aug = torchvision.transforms.v2.ScaleJitter(target_size=(self.reso_encoder, self.reso_encoder), scale_range=(0.5, 1.5))
@autocast
def scale_jitter_aug(self, x):
inp_size = x.shape[2]
# aug_size = torch.randint(low=50, high=100, size=(1,)) / 100 * inp_size
aug_size = int(max(0.5, random.random()) * inp_size)
# st()
x = torch.nn.functional.interpolate(x,
size=aug_size,
mode='bilinear',
antialias=True)
x = torch.nn.functional.interpolate(x,size=inp_size,
mode='bilinear', antialias=True)
return x
@autocast
def gen_rays(self, c):
# Generate rays
intrinsics, c2w = c[16:], c[:16].reshape(4, 4)
self.h = self.reso_encoder
self.w = self.reso_encoder
yy, xx = torch.meshgrid(
torch.arange(self.h, dtype=torch.float32, device=c.device) + 0.5,
torch.arange(self.w, dtype=torch.float32, device=c.device) + 0.5,
indexing='ij')
# normalize to 0-1 pixel range
yy = yy / self.h
xx = xx / self.w
# K = np.array([f_x, 0, w / 2, 0, f_y, h / 2, 0, 0, 1]).reshape(3, 3)
cx, cy, fx, fy = intrinsics[2], intrinsics[5], intrinsics[
0], intrinsics[4]
# cx *= self.w
# cy *= self.h
# f_x = f_y = fx * h / res_raw
# c2w = torch.from_numpy(c2w).float()
c2w = c2w.float()
xx = (xx - cx) / fx
yy = (yy - cy) / fy
zz = torch.ones_like(xx)
dirs = torch.stack((xx, yy, zz), dim=-1) # OpenCV convention
dirs /= torch.norm(dirs, dim=-1, keepdim=True)
dirs = dirs.reshape(-1, 3, 1)
del xx, yy, zz
# st()
dirs = (c2w[None, :3, :3] @ dirs)[..., 0]
origins = c2w[None, :3, 3].expand(self.h * self.w, -1).contiguous()
origins = origins.view(self.h, self.w, 3)
dirs = dirs.view(self.h, self.w, 3)
return origins, dirs
@autocast
def get_plucker_ray(self, c):
rays_plucker = []
for idx in range(c.shape[0]):
rays_o, rays_d = self.gen_rays(c[idx])
rays_plucker.append(
torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d],
dim=-1).permute(2, 0, 1)) # [h, w, 6] -> 6,h,w
rays_plucker = torch.stack(rays_plucker, 0)
return rays_plucker
@autocast
def _model_forward(self, x, plucker_c, *args, **kwargs):
with torch.cuda.amp.autocast(dtype=self.dtype, enabled=True):
x = torch.cat([x, plucker_c], dim=1).to(self.dtype)
return self.model(x, **kwargs)
def preprocess(self, x):
# add gaussian noise and rescale augmentation
if self.ucg_rate > 0.0:
# 1 means maintain the input x
enable_drop_flag = torch.bernoulli(
(1.0 - self.ucg_rate) *
torch.ones(x.shape[0], device=x.device))[:, None, None, None] # broadcast to B,1,1,1
# * add random downsample & upsample
# rescaled_x = self.downsample_upsample(x)
# torchvision.utils.save_image(x, 'tmp/x.png', normalize=True, value_range=(-1,1))
x_aug = self.scale_jitter_aug(x)
# torchvision.utils.save_image(x_aug, 'tmp/rescale-x.png', normalize=True, value_range=(-1,1))
# x_aug = x * enable_drop_flag + (1-enable_drop_flag) * x_aug
# * guassian noise jitter
# force linear_weight > 0.24
# linear_weight = torch.max(enable_drop_flag, torch.max(torch.rand_like(enable_drop_flag), 0.25 * torch.ones_like(enable_drop_flag), dim=0, keepdim=True), dim=0, keepdim=True)
gaussian_jitter_scale, jitter_lb = torch.rand_like(enable_drop_flag), 0.5 * torch.ones_like(enable_drop_flag)
gaussian_jitter_scale = torch.where(gaussian_jitter_scale>jitter_lb, gaussian_jitter_scale, jitter_lb)
# torchvision.utils.save_image(x, 'tmp/aug-x.png', normalize=True, value_range=(-1,1))
x_aug = gaussian_jitter_scale * x_aug + (1 - gaussian_jitter_scale) * torch.randn_like(x).clamp(-1,1)
x_aug = x * enable_drop_flag + (1-enable_drop_flag) * x_aug
# torchvision.utils.save_image(x_aug, 'tmp/final-x.png', normalize=True, value_range=(-1,1))
# st()
return super().preprocess(x)
def random_rotate_c(self, c):
intrinsics, c2ws = c[16:], c[:16].reshape(4, 4)
# https://github.com/TencentARC/InstantMesh/blob/34c193cc96eebd46deb7c48a76613753ad777122/src/data/objaverse.py#L195
degree = np.random.uniform(0, math.pi * 2)
# random rotation along z axis
if random.random() > 0.5:
rot = torch.tensor([
[np.cos(degree), -np.sin(degree), 0, 0],
[np.sin(degree), np.cos(degree), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
]).to(c2ws)
else:
# random rotation along y axis
rot = torch.tensor([
[np.cos(degree), 0, np.sin(degree), 0],
[0, 1, 0, 0],
[-np.sin(degree), 0, np.cos(degree), 0],
[0, 0, 0, 1],
]).to(c2ws)
c2ws = torch.matmul(rot, c2ws)
return torch.cat([c2ws.reshape(-1), intrinsics])
@autocast
def forward(self, img_c, no_dropout=False):
mv_image, c = img_c['img'], img_c['c']
if self.aug_c:
for idx_b in range(c.shape[0]):
for idx_v in range(c.shape[1]):
if random.random() > 0.6:
c[idx_b, idx_v] = self.random_rotate_c(c[idx_b, idx_v])
# plucker_c = self.get_plucker_ray(
# rearrange(c[:, 1:1 + self.n_cond_frames], "b t ... -> (b t) ..."))
plucker_c = self.get_plucker_ray(
rearrange(c[:, :self.n_cond_frames], "b t ... -> (b t) ..."))
# mv_image_tokens = super().forward(mv_image[:, 1:1 + self.n_cond_frames],
mv_image_tokens = super().forward(mv_image[:, :self.n_cond_frames],
plucker_c=plucker_c,
no_dropout=no_dropout)
mv_image_tokens = rearrange(mv_image_tokens,
"(b t) ... -> b t ...",
t=self.n_cond_frames)
return mv_image_tokens
def make_2tuple(x):
if isinstance(x, tuple):
assert len(x) == 2
return x
assert isinstance(x, int)
return (x, x)
class PatchEmbed(nn.Module):
"""
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
Args:
img_size: Image size.
patch_size: Patch token size.
in_chans: Number of input image channels.
embed_dim: Number of linear projection output channels.
norm_layer: Normalization layer.
"""
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
embed_dim: int = 768,
norm_layer = None,
flatten_embedding: bool = True,
) -> None:
super().__init__()
image_HW = make_2tuple(img_size)
patch_HW = make_2tuple(patch_size)
patch_grid_size = (
image_HW[0] // patch_HW[0],
image_HW[1] // patch_HW[1],
)
self.img_size = image_HW
self.patch_size = patch_HW
self.patches_resolution = patch_grid_size
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.flatten_embedding = flatten_embedding
self.proj = nn.Conv2d(in_chans,
embed_dim,
kernel_size=patch_HW,
stride=patch_HW)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
_, _, H, W = x.shape
patch_H, patch_W = self.patch_size
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
x = self.proj(x) # B C H W
H, W = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2) # B HW C
x = self.norm(x)
if not self.flatten_embedding:
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
return x
def flops(self) -> float:
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (
self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class FrozenDinov2ImageEmbedderMV(FrozenDinov2ImageEmbedder):
def __init__(
self,
arch="vitl",
version="dinov2", # by default
device="cuda",
max_length=77,
freeze=True,
antialias=True,
ucg_rate=0.0,
unsqueeze_dim=False,
repeat_to_max_len=False,
num_image_crops=0,
output_tokens=False,
output_cls=False,
init_device=None,
# mv cond settings
n_cond_frames=4, # numebr of condition views
enable_bf16=False,
modLN=False,
):
super().__init__(
arch,
version,
device,
max_length,
freeze,
antialias,
ucg_rate,
unsqueeze_dim,
repeat_to_max_len,
num_image_crops,
output_tokens,
output_cls,
init_device,
)
self.n_cond_frames = n_cond_frames
self.dtype = torch.bfloat16 if enable_bf16 else torch.float32
self.enable_bf16 = enable_bf16
# ! proj c_cond to features
hidden_size = self.model.embed_dim # 768 for vit-b
# self.cam_proj = CaptionEmbedder(16, hidden_size,
self.cam_proj = CaptionEmbedder(25, hidden_size, act_layer=approx_gelu)
# ! single-modLN
self.model.modLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 4 * hidden_size, bias=True))
# zero-init modLN
nn.init.constant_(self.model.modLN_modulation[-1].weight, 0)
nn.init.constant_(self.model.modLN_modulation[-1].bias, 0)
# inject modLN to dino block
for block in self.model.blocks:
block.scale_shift_table = nn.Parameter(torch.zeros(
4, hidden_size)) # zero init also
# torch.randn(4, hidden_size) / hidden_size**0.5)
def _model_forward(self, x, *args, **kwargs):
# re-define model forward, finetune dino-v2.
assert self.training
# ? how to send in camera
# c = 0 # placeholder
# ret = self.model.forward_features(*args, **kwargs)
with torch.cuda.amp.autocast(dtype=self.dtype, enabled=True):
x = self.model.prepare_tokens_with_masks(x, masks=None)
B, N, C = x.shape
# TODO how to send in c
# c = torch.ones(B, 25).to(x) # placeholder
c = kwargs.get('c')
c = self.cam_proj(c)
cond = self.model.modLN_modulation(c)
# https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/layers/block.py#L89
for blk in self.model.blocks: # inject modLN
shift_msa, scale_msa, shift_mlp, scale_mlp = (
blk.scale_shift_table[None] +
cond.reshape(B, 4, -1)).chunk(4, dim=1)
def attn_residual_func(x: torch.Tensor) -> torch.Tensor:
# return blk.ls1(blk.attn(blk.norm1(x), attn_bias=attn_bias))
return blk.ls1(
blk.attn(
t2i_modulate(blk.norm1(x), shift_msa, scale_msa)))
def ffn_residual_func(x: torch.Tensor) -> torch.Tensor:
# return blk.ls2(blk.mlp(blk.norm2(x)))
return blk.ls2(
t2i_modulate(blk.mlp(blk.norm2(x)), shift_mlp,
scale_mlp))
x = x + blk.drop_path1(
attn_residual_func(x)) # all drop_path identity() here.
x = x + blk.drop_path2(ffn_residual_func(x))
x_norm = self.model.norm(x)
return {
"x_norm_clstoken": x_norm[:, 0],
# "x_norm_regtokens": x_norm[:, 1 : self.model.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:,
self.model.num_register_tokens + 1:],
# "x_prenorm": x,
# "masks": masks,
}
@autocast
def forward(self, img_c, no_dropout=False):
# if self.enable_bf16:
# with th.cuda.amp.autocast(dtype=self.dtype,
# enabled=True):
# mv_image = super().forward(mv_image[:, 1:1+self.n_cond_frames].to(torch.bf16))
# else:
mv_image, c = img_c['img'], img_c['c']
# ! use zero c here, ablation. current verison wrong.
# c = torch.zeros_like(c)
# ! frame-0 as canonical here.
mv_image = super().forward(mv_image[:, 1:1 + self.n_cond_frames],
c=rearrange(c[:, 1:1 + self.n_cond_frames],
"b t ... -> (b t) ...",
t=self.n_cond_frames),
no_dropout=no_dropout)
mv_image = rearrange(mv_image,
"(b t) ... -> b t ...",
t=self.n_cond_frames)
return mv_image
class FrozenCLIPT5Encoder(AbstractEmbModel):
def __init__(
self,
clip_version="openai/clip-vit-large-patch14",
t5_version="google/t5-v1_1-xl",
device="cuda",
clip_max_length=77,
t5_max_length=77,
):
super().__init__()
self.clip_encoder = FrozenCLIPEmbedder(clip_version,
device,
max_length=clip_max_length)
self.t5_encoder = FrozenT5Embedder(t5_version,
device,
max_length=t5_max_length)
print(
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params."
)
def encode(self, text):
return self(text)
def forward(self, text):
clip_z = self.clip_encoder.encode(text)
t5_z = self.t5_encoder.encode(text)
return [clip_z, t5_z]
class SpatialRescaler(nn.Module):
def __init__(
self,
n_stages=1,
method="bilinear",
multiplier=0.5,
in_channels=3,
out_channels=None,
bias=False,
wrap_video=False,
kernel_size=1,
remap_output=False,
):
super().__init__()
self.n_stages = n_stages
assert self.n_stages >= 0
assert method in [
"nearest",
"linear",
"bilinear",
"trilinear",
"bicubic",
"area",
]
self.multiplier = multiplier
self.interpolator = partial(torch.nn.functional.interpolate,
mode=method)
self.remap_output = out_channels is not None or remap_output
if self.remap_output:
print(
f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing."
)
self.channel_mapper = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
bias=bias,
padding=kernel_size // 2,
)
self.wrap_video = wrap_video
def forward(self, x):
if self.wrap_video and x.ndim == 5:
B, C, T, H, W = x.shape
x = rearrange(x, "b c t h w -> b t c h w")
x = rearrange(x, "b t c h w -> (b t) c h w")
for stage in range(self.n_stages):
x = self.interpolator(x, scale_factor=self.multiplier)
if self.wrap_video:
x = rearrange(x, "(b t) c h w -> b t c h w", b=B, t=T, c=C)
x = rearrange(x, "b t c h w -> b c t h w")
if self.remap_output:
x = self.channel_mapper(x)
return x
def encode(self, x):
return self(x)
class LowScaleEncoder(nn.Module):
def __init__(
self,
model_config,
linear_start,
linear_end,
timesteps=1000,
max_noise_level=250,
output_size=64,
scale_factor=1.0,
):
super().__init__()
self.max_noise_level = max_noise_level
self.model = instantiate_from_config(model_config)
self.augmentation_schedule = self.register_schedule(
timesteps=timesteps,
linear_start=linear_start,
linear_end=linear_end)
self.out_size = output_size
self.scale_factor = scale_factor
def register_schedule(
self,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps, ) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (alphas_cumprod.shape[0] == self.num_timesteps
), "alphas have to be defined for each timestep"
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer("betas", to_torch(betas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("alphas_cumprod_prev",
to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod",
to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer("sqrt_one_minus_alphas_cumprod",
to_torch(np.sqrt(1.0 - alphas_cumprod)))
self.register_buffer("log_one_minus_alphas_cumprod",
to_torch(np.log(1.0 - alphas_cumprod)))
self.register_buffer("sqrt_recip_alphas_cumprod",
to_torch(np.sqrt(1.0 / alphas_cumprod)))
self.register_buffer("sqrt_recipm1_alphas_cumprod",
to_torch(np.sqrt(1.0 / alphas_cumprod - 1)))
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) *
x_start + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod,
t, x_start.shape) * noise)
def forward(self, x):
z = self.model.encode(x)
if isinstance(z, DiagonalGaussianDistribution):
z = z.sample()
z = z * self.scale_factor
noise_level = torch.randint(0,
self.max_noise_level, (x.shape[0], ),
device=x.device).long()
z = self.q_sample(z, noise_level)
if self.out_size is not None:
z = torch.nn.functional.interpolate(z,
size=self.out_size,
mode="nearest")
return z, noise_level
def decode(self, z):
z = z / self.scale_factor
return self.model.decode(z)
class ConcatTimestepEmbedderND(AbstractEmbModel):
"""embeds each dimension independently and concatenates them"""
def __init__(self, outdim):
super().__init__()
self.timestep = Timestep(outdim)
self.outdim = outdim
def forward(self, x):
if x.ndim == 1:
x = x[:, None]
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
x = rearrange(x, "b d -> (b d)")
emb = self.timestep(x)
emb = rearrange(emb,
"(b d) d2 -> b (d d2)",
b=b,
d=dims,
d2=self.outdim)
return emb
class GaussianEncoder(Encoder, AbstractEmbModel):
def __init__(self,
weight: float = 1.0,
flatten_output: bool = True,
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.posterior = DiagonalGaussianRegularizer()
self.weight = weight
self.flatten_output = flatten_output
def forward(self, x) -> Tuple[Dict, torch.Tensor]:
z = super().forward(x)
z, log = self.posterior(z)
log["loss"] = log["kl_loss"]
log["weight"] = self.weight
if self.flatten_output:
z = rearrange(z, "b c h w -> b (h w ) c")
return log, z
class VideoPredictionEmbedderWithEncoder(AbstractEmbModel):
def __init__(
self,
n_cond_frames: int,
n_copies: int,
encoder_config: dict,
sigma_sampler_config: Optional[dict] = None,
sigma_cond_config: Optional[dict] = None,
is_ae: bool = False,
scale_factor: float = 1.0,
disable_encoder_autocast: bool = False,
en_and_decode_n_samples_a_time: Optional[int] = None,
):
super().__init__()
self.n_cond_frames = n_cond_frames
self.n_copies = n_copies
self.encoder = instantiate_from_config(encoder_config)
self.sigma_sampler = (instantiate_from_config(sigma_sampler_config)
if sigma_sampler_config is not None else None)
self.sigma_cond = (instantiate_from_config(sigma_cond_config)
if sigma_cond_config is not None else None)
self.is_ae = is_ae
self.scale_factor = scale_factor
self.disable_encoder_autocast = disable_encoder_autocast
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
def forward(
self, vid: torch.Tensor
) -> Union[
torch.Tensor,
Tuple[torch.Tensor, torch.Tensor],
Tuple[torch.Tensor, dict],
Tuple[Tuple[torch.Tensor, torch.Tensor], dict],
]:
if self.sigma_sampler is not None:
b = vid.shape[0] // self.n_cond_frames
sigmas = self.sigma_sampler(b).to(vid.device)
if self.sigma_cond is not None:
sigma_cond = self.sigma_cond(sigmas)
sigma_cond = repeat(sigma_cond,
"b d -> (b t) d",
t=self.n_copies)
sigmas = repeat(sigmas, "b -> (b t)", t=self.n_cond_frames)
noise = torch.randn_like(vid)
vid = vid + noise * append_dims(sigmas, vid.ndim)
with torch.autocast("cuda", enabled=not self.disable_encoder_autocast):
n_samples = (self.en_and_decode_n_samples_a_time
if self.en_and_decode_n_samples_a_time is not None
else vid.shape[0])
n_rounds = math.ceil(vid.shape[0] / n_samples)
all_out = []
for n in range(n_rounds):
if self.is_ae:
out = self.encoder.encode(vid[n * n_samples:(n + 1) *
n_samples])
else:
out = self.encoder(vid[n * n_samples:(n + 1) * n_samples])
all_out.append(out)
vid = torch.cat(all_out, dim=0)
vid *= self.scale_factor
vid = rearrange(vid,
"(b t) c h w -> b () (t c) h w",
t=self.n_cond_frames)
vid = repeat(vid, "b 1 c h w -> (b t) c h w", t=self.n_copies)
return_val = (vid, sigma_cond) if self.sigma_cond is not None else vid
return return_val
class FrozenOpenCLIPImagePredictionEmbedder(AbstractEmbModel):
def __init__(
self,
open_clip_embedding_config: Dict,
n_cond_frames: int,
n_copies: int,
):
super().__init__()
self.n_cond_frames = n_cond_frames
self.n_copies = n_copies
self.open_clip = instantiate_from_config(open_clip_embedding_config)
def forward(self, vid):
vid = self.open_clip(vid)
vid = rearrange(vid, "(b t) d -> b t d", t=self.n_cond_frames)
vid = repeat(vid, "b t d -> (b s) t d", s=self.n_copies)
return vid
class FrozenOpenCLIPImageMVEmbedder(AbstractEmbModel):
# for multi-view 3D diffusion condition. Only extract the first frame
def __init__(
self,
open_clip_embedding_config: Dict,
# n_cond_frames: int,
# n_copies: int,
):
super().__init__()
# self.n_cond_frames = n_cond_frames
# self.n_copies = n_copies
self.open_clip = instantiate_from_config(open_clip_embedding_config)
def forward(self, vid, no_dropout=False):
# st()
vid = self.open_clip(vid[:, 0, ...], no_dropout=no_dropout)
# vid = rearrange(vid, "(b t) d -> b t d", t=self.n_cond_frames)
# vid = repeat(vid, "b t d -> (b s) t d", s=self.n_copies)
return vid
|