File size: 27,032 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""

import math
import torch
import torch.nn as nn
import numpy as np

from .ray_marcher import MipRayMarcher2
from . import math_utils
from pdb import set_trace as st
from .ray_sampler import depth2pts_outside, HUGE_NUMBER, TINY_NUMBER


def generate_planes():
    """
    Defines planes by the three vectors that form the "axes" of the
    plane. Should work with arbitrary number of planes and planes of
    arbitrary orientation.
    """
    return torch.tensor(
        [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 0, 1], [0, 1, 0]],
         [[0, 0, 1], [1, 0, 0], [0, 1, 0]]],
        dtype=torch.float32)


# def project_onto_planes(planes, coordinates):
#     """
#     Does a projection of a 3D point onto a batch of 2D planes,
#     returning 2D plane coordinates.

#     Takes plane axes of shape n_planes, 3, 3
#     # Takes coordinates of shape N, M, 3
#     # returns projections of shape N*n_planes, M, 2
#     """
#     N, M, C = coordinates.shape
#     n_planes, _, _ = planes.shape
#     coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
#     inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
#     projections = torch.bmm(coordinates, inv_planes)
#     return projections[..., :2]


def project_onto_planes(planes, coordinates):
    """
    Does a projection of a 3D point onto a batch of 2D planes,
    returning 2D plane coordinates.

    Takes plane axes of shape n_planes, 3, 3
    # Takes coordinates of shape N, M, 3
    # returns projections of shape N*n_planes, M, 2
    """

    # # ORIGINAL
    # N, M, C = coordinates.shape
    # xy_coords = coordinates[..., [0, 1]]
    # xz_coords = coordinates[..., [0, 2]]
    # zx_coords = coordinates[..., [2, 0]]
    # return torch.stack([xy_coords, xz_coords, zx_coords], dim=1).reshape(N*3, M, 2)

    # FIXED
    N, M, _ = coordinates.shape
    xy_coords = coordinates[..., [0, 1]]
    yz_coords = coordinates[..., [1, 2]]
    zx_coords = coordinates[..., [2, 0]]
    return torch.stack([xy_coords, yz_coords, zx_coords],
                       dim=1).reshape(N * 3, M, 2)


def sample_from_planes(plane_axes,
                       plane_features,
                       coordinates,
                       mode='bilinear',
                       padding_mode='zeros',
                       box_warp=None):
    assert padding_mode == 'zeros'
    N, n_planes, C, H, W = plane_features.shape
    _, M, _ = coordinates.shape
    # st()
    plane_features = plane_features.view(N * n_planes, C, H, W)
    # plane_features = plane_features.reshape(N * n_planes, C, H, W)

    coordinates = (2 / box_warp) * coordinates  # TODO: add specific box bounds

    projected_coordinates = project_onto_planes(plane_axes,
                                                coordinates).unsqueeze(1)
    output_features = torch.nn.functional.grid_sample(
        plane_features,
        projected_coordinates.float(),
        mode=mode,
        padding_mode=padding_mode,
        align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
    return output_features


def sample_from_3dgrid(grid, coordinates):
    """
    Expects coordinates in shape (batch_size, num_points_per_batch, 3)
    Expects grid in shape (1, channels, H, W, D)
    (Also works if grid has batch size)
    Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
    """
    batch_size, n_coords, n_dims = coordinates.shape
    sampled_features = torch.nn.functional.grid_sample(
        grid.expand(batch_size, -1, -1, -1, -1),
        coordinates.reshape(batch_size, 1, 1, -1, n_dims),
        mode='bilinear',
        padding_mode='zeros',
        align_corners=False)
    N, C, H, W, D = sampled_features.shape
    sampled_features = sampled_features.permute(0, 4, 3, 2,
                                                1).reshape(N, H * W * D, C)
    return sampled_features


class ImportanceRenderer(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.ray_marcher = MipRayMarcher2()
        self.plane_axes = generate_planes()

    def forward(self,
                planes,
                decoder,
                ray_origins,
                ray_directions,
                rendering_options,
                return_meta=False):
        # return_sampling_details_flag=False):
        self.plane_axes = self.plane_axes.to(ray_origins.device)
        # if rendering_options.get('return_sampling_details_flag', None) is not None:
        shape_synthesized = {}

        if rendering_options['ray_start'] == rendering_options[
                'ray_end'] == 'auto':
            ray_start, ray_end = math_utils.get_ray_limits_box(
                ray_origins,
                ray_directions,
                box_side_length=rendering_options['box_warp'])
            is_ray_valid = ray_end > ray_start
            # st()
            if torch.any(is_ray_valid).item():
                ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
                ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
            depths_coarse = self.sample_stratified(
                ray_origins, ray_start, ray_end,
                rendering_options['depth_resolution'],
                rendering_options['disparity_space_sampling'])
        else:
            # Create stratified depth samples
            depths_coarse = self.sample_stratified(
                ray_origins, rendering_options['ray_start'],
                rendering_options['ray_end'],
                rendering_options['depth_resolution'],
                rendering_options['disparity_space_sampling'])

        batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape

        # Coarse Pass
        sample_coordinates = (
            ray_origins.unsqueeze(-2) +
            depths_coarse * ray_directions.unsqueeze(-2)).reshape(
                batch_size, -1, 3)
        # st() # np.save('sample_coordinates.npy', sample_coordinates.detach().cpu().numpy())
        sample_directions = ray_directions.unsqueeze(-2).expand(
            -1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)

        colors_coarse, densities_coarse = self.run_model(
            planes, decoder, sample_coordinates, sample_directions,
            rendering_options, batch_size, num_rays, samples_per_ray)

        colors_coarse = colors_coarse.reshape(batch_size, num_rays,
                                              samples_per_ray,
                                              colors_coarse.shape[-1])
        densities_coarse = densities_coarse.reshape(batch_size, num_rays,
                                                    samples_per_ray, 1)

        if rendering_options.get('return_sampling_details_flag', False):
            shape_synthesized.update({
                # 'coarse_coords': sample_coordinates.detach().clone(),
                # 'coarse_densities': densities_coarse.detach()
                'coarse_coords':
                sample_coordinates.reshape(batch_size, num_rays,
                                           samples_per_ray, 3),
                'coarse_densities':
                densities_coarse
            })

        # Fine Pass
        N_importance = rendering_options['depth_resolution_importance']
        if N_importance > 0:
            _, _, _, weights = self.ray_marcher(colors_coarse,
                                                densities_coarse,
                                                depths_coarse,
                                                rendering_options)

            depths_fine = self.sample_importance(depths_coarse, weights,
                                                 N_importance)

            sample_directions = ray_directions.unsqueeze(-2).expand(
                -1, -1, N_importance, -1).reshape(batch_size, -1, 3)
            sample_coordinates = (
                ray_origins.unsqueeze(-2) +
                depths_fine * ray_directions.unsqueeze(-2)).reshape(
                    batch_size, -1, 3)

            colors_fine, densities_fine = self.run_model(
                planes, decoder, sample_coordinates, sample_directions,
                rendering_options, batch_size, num_rays, N_importance)
            # colors_fine = out['rgb']
            # densities_fine = out['sigma']
            colors_fine = colors_fine.reshape(batch_size, num_rays,
                                              N_importance,
                                              colors_fine.shape[-1])
            densities_fine = densities_fine.reshape(batch_size, num_rays,
                                                    N_importance, 1)
            if rendering_options.get('return_sampling_details_flag', False):
                shape_synthesized.update({
                    # 'fine_coords': sample_coordinates.detach(),
                    # 'fine_densities': densities_fine.detach()
                    'fine_coords': sample_coordinates,
                    # 'fine_coords': sample_coordinates.reshape(batch_size, num_rays, N_importance, 3),
                    'fine_densities': densities_fine,
                })

            all_depths, all_colors, all_densities, indices = self.unify_samples(
                depths_coarse, colors_coarse, densities_coarse, depths_fine,
                colors_fine, densities_fine)

            # Aggregate
            rgb_final, depth_final, visibility, weights = self.ray_marcher(
                all_colors, all_densities, all_depths, rendering_options)

        else:
            rgb_final, depth_final, visibility, weights = self.ray_marcher(
                colors_coarse, densities_coarse, depths_coarse,
                rendering_options)

        if rendering_options.get('return_surface', False):
            weight_total = weights.sum(2)

            all_coords = torch.cat([
                shape_synthesized['coarse_coords'],
                shape_synthesized['fine_coords']
            ],
                                   dim=-2)  # B 4096 48+48 3
            all_coords = torch.gather(all_coords, -2,
                                      indices.expand(-1, -1, -1, 3))

            composite_surface = torch.sum(weights * all_coords,
                                          -2) / weight_total

            # clip the composite to min/max range of depths
            composite_surface = torch.nan_to_num(composite_surface,
                                                 float('inf'))
            composite_surface = torch.clamp(composite_surface,
                                            torch.min(all_coords),
                                            torch.max(all_coords))
            shape_synthesized['surface_coords'] = composite_surface

        shape_synthesized.update({
            # 'depth': depth_final.detach()
            'depth': depth_final
        })

        ret_dict = {
            'feature_samples': rgb_final,
            'depth_samples': depth_final,
            'weights_samples': weights.sum(2),
            'shape_synthesized': shape_synthesized,
            'visibility': visibility  # T[..., -1]
        }

        if return_meta:  # for pifu
            all_coords = torch.cat([
                shape_synthesized['coarse_coords'],
                shape_synthesized['fine_coords'].reshape(
                    batch_size, num_rays, N_importance, 3)
            ],
                                   dim=-2)
            # 'fine_coords': sample_coordinates,
            all_coords = torch.gather(all_coords, -2,
                                      indices.expand(-1, -1, -1, 3))

            ret_dict.update({
                'all_coords': all_coords,
                'feature_volume': all_colors,
                'weights': weights
            })

        if rendering_options.get('return_sampling_details_flag', False):
            ret_dict.update({'shape_synthesized': shape_synthesized})
            # return rgb_final, depth_final, weights.sum(2), shape_synthesized # rgb_final, B, 4096, 32

        # return rgb_final, depth_final, weights.sum(2)
        return ret_dict

    # old run_model
    def _run_model(self, planes, decoder, sample_coordinates,
                   sample_directions, options):
        sampled_features = sample_from_planes(self.plane_axes,
                                              planes,
                                              sample_coordinates,
                                              padding_mode='zeros',
                                              box_warp=options['box_warp'])

        out = decoder(sampled_features, sample_directions)
        if options.get('density_noise', 0) > 0:
            out['sigma'] += torch.randn_like(
                out['sigma']) * options['density_noise']
        return out

    def run_model(self, planes, decoder, sample_coordinates, sample_directions,
                  rendering_options, batch_size, num_rays, samples_per_ray):
        """ a compat wrapper for Objaverse (bbox-sampling) and FFHQ/Shapenet-based rendering (ray-start/end sampling).
        
            returns color and density
        """

        if rendering_options.get('filter_out_of_bbox', False):
            # Coarse Pass
            colors, densities = self._forward_pass(
                # depths=depths_coarse,
                # ray_directions=ray_directions,
                # ray_origins=ray_origins,
                sample_coordinates,
                sample_directions,
                planes=planes,
                decoder=decoder,
                rendering_options=rendering_options,
                batch_size=batch_size,
                num_rays=num_rays,
                samples_per_ray=samples_per_ray,
            )
        else:
            out = self._run_model(planes, decoder, sample_coordinates,
                                  sample_directions, rendering_options)
            colors = out['rgb']
            densities = out['sigma']

        return colors, densities

    def _forward_pass(
            self,
            sample_coordinates,
            sample_directions,
            #   depths: torch.Tensor,
            #   ray_directions: torch.Tensor,
            #   ray_origins: torch.Tensor,
            planes: torch.Tensor,
            decoder: nn.Module,
            rendering_options: dict,
            batch_size,
            num_rays,
            samples_per_ray):
        """
        Additional filtering is applied to filter out-of-box samples.
        Modifications made by Zexin He.
        """

        # context related variables
        # batch_size, num_rays, samples_per_ray, _ = depths.shape
        device = sample_coordinates.device

        # define sample points with depths
        # sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
        # sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)

        # filter out-of-box samples
        mask_inbox = \
            (rendering_options['sampler_bbox_min'] <= sample_coordinates) & \
                (sample_coordinates <= rendering_options['sampler_bbox_max'])
        mask_inbox = mask_inbox.all(-1) # np.save('box.npy', mask_inbox.detach().cpu().numpy())

        # forward model according to all samples
        _out = self._run_model(planes, decoder, sample_coordinates,
                               sample_directions, rendering_options)

        # set out-of-box samples to zeros(rgb) & -inf(sigma)
        SAFE_GUARD = 3
        DATA_TYPE = _out['sigma'].dtype
        colors_pass = torch.zeros(batch_size,
                                  num_rays * samples_per_ray,
                                #   3,
                                  decoder.decoder_output_dim,
                                  device=device,
                                  dtype=DATA_TYPE)
        densities_pass = torch.nan_to_num(
            torch.full((batch_size, num_rays * samples_per_ray, 1),
                       -float('inf'),
                       device=device,
                       dtype=DATA_TYPE)) / SAFE_GUARD
        colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][
            mask_inbox], _out['sigma'][mask_inbox]

        # reshape back
        # colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1])
        # densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1])

        return colors_pass, densities_pass

    def sort_samples(self, all_depths, all_colors, all_densities):
        _, indices = torch.sort(all_depths, dim=-2)
        all_depths = torch.gather(all_depths, -2, indices)
        all_colors = torch.gather(
            all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
        all_densities = torch.gather(all_densities, -2,
                                     indices.expand(-1, -1, -1, 1))
        return all_depths, all_colors, all_densities

    def unify_samples(self, depths1, colors1, densities1, depths2, colors2,
                      densities2):
        all_depths = torch.cat([depths1, depths2], dim=-2)
        all_colors = torch.cat([colors1, colors2], dim=-2)
        all_densities = torch.cat([densities1, densities2], dim=-2)

        _, indices = torch.sort(all_depths, dim=-2)
        all_depths = torch.gather(all_depths, -2, indices)
        all_colors = torch.gather(
            all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
        all_densities = torch.gather(all_densities, -2,
                                     indices.expand(-1, -1, -1, 1))

        return all_depths, all_colors, all_densities, indices

    def sample_stratified(self,
                          ray_origins,
                          ray_start,
                          ray_end,
                          depth_resolution,
                          disparity_space_sampling=False):
        """
        Return depths of approximately uniformly spaced samples along rays.
        """
        N, M, _ = ray_origins.shape
        if disparity_space_sampling:
            depths_coarse = torch.linspace(0,
                                           1,
                                           depth_resolution,
                                           device=ray_origins.device).reshape(
                                               1, 1, depth_resolution,
                                               1).repeat(N, M, 1, 1)
            depth_delta = 1 / (depth_resolution - 1)
            depths_coarse += torch.rand_like(depths_coarse) * depth_delta
            depths_coarse = 1. / (1. / ray_start * (1. - depths_coarse) +
                                  1. / ray_end * depths_coarse)
        else:
            if type(ray_start) == torch.Tensor:
                depths_coarse = math_utils.linspace(ray_start, ray_end,
                                                    depth_resolution).permute(
                                                        1, 2, 0, 3)
                depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
                depths_coarse += torch.rand_like(depths_coarse) * depth_delta[
                    ..., None]
            else:
                depths_coarse = torch.linspace(
                    ray_start,
                    ray_end,
                    depth_resolution,
                    device=ray_origins.device).reshape(1, 1, depth_resolution,
                                                       1).repeat(N, M, 1, 1)
                depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
                depths_coarse += torch.rand_like(depths_coarse) * depth_delta
                # print("ignore normal noise!!! for debugging")

        return depths_coarse

    def sample_importance(self, z_vals, weights, N_importance):
        """
        Return depths of importance sampled points along rays. See NeRF importance sampling for more.
        """
        with torch.no_grad():
            batch_size, num_rays, samples_per_ray, _ = z_vals.shape

            z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
            weights = weights.reshape(
                batch_size * num_rays,
                -1)  # -1 to account for loss of 1 sample in MipRayMarcher

            # smooth weights
            weights = torch.nn.functional.max_pool1d(
                weights.unsqueeze(1).float(), 2, 1, padding=1)
            weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
            weights = weights + 0.01

            z_vals_mid = 0.5 * (z_vals[:, :-1] + z_vals[:, 1:])
            importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
                                                N_importance).detach().reshape(
                                                    batch_size, num_rays,
                                                    N_importance, 1)
        return importance_z_vals

    def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
        """
        Sample @N_importance samples from @bins with distribution defined by @weights.
        Inputs:
            bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
            weights: (N_rays, N_samples_)
            N_importance: the number of samples to draw from the distribution
            det: deterministic or not
            eps: a small number to prevent division by zero
        Outputs:
            samples: the sampled samples
        """
        N_rays, N_samples_ = weights.shape
        weights = weights + eps  # prevent division by zero (don't do inplace op!)
        pdf = weights / torch.sum(weights, -1,
                                  keepdim=True)  # (N_rays, N_samples_)
        cdf = torch.cumsum(
            pdf, -1)  # (N_rays, N_samples), cumulative distribution function
        cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf],
                        -1)  # (N_rays, N_samples_+1)
        # padded to 0~1 inclusive

        if det:
            u = torch.linspace(0, 1, N_importance, device=bins.device)
            u = u.expand(N_rays, N_importance)
        else:
            u = torch.rand(N_rays, N_importance, device=bins.device)
        u = u.contiguous()

        inds = torch.searchsorted(cdf, u, right=True)
        below = torch.clamp_min(inds - 1, 0)
        above = torch.clamp_max(inds, N_samples_)

        inds_sampled = torch.stack([below, above],
                                   -1).view(N_rays, 2 * N_importance)
        cdf_g = torch.gather(cdf, 1,
                             inds_sampled).view(N_rays, N_importance, 2)
        bins_g = torch.gather(bins, 1,
                              inds_sampled).view(N_rays, N_importance, 2)

        denom = cdf_g[..., 1] - cdf_g[..., 0]
        denom[
            denom <
            eps] = 1  # denom equals 0 means a bin has weight 0, in which case it will not be sampled
        # anyway, therefore any value for it is fine (set to 1 here)

        samples = bins_g[..., 0] + (u - cdf_g[..., 0]) / denom * (
            bins_g[..., 1] - bins_g[..., 0])
        return samples


class ImportanceRendererfg_bg(ImportanceRenderer):
    """
    render foreground-background together, using nerfpp strategy.
    """
    def __init__(self):
        super().__init__()

    def forward_background(self, bg_planes, decoder, ray_origins,
                           ray_directions, rendering_options):
        # ! no importance sampling here.

        # # background depth
        depths_coarse = self.sample_stratified(
            ray_origins, 0, 1, rendering_options['bg_depth_resolution'],
            rendering_options['disparity_space_sampling']).squeeze(
                -1)  # remove the last 1 dim, B N S here

        batch_size, num_rays, samples_per_ray = depths_coarse.shape

        sample_directions = ray_directions.unsqueeze(-2).expand(
            -1, -1, samples_per_ray, -1)
        sample_origins = ray_origins.unsqueeze(-2).expand(
            -1, -1, samples_per_ray, -1)

        bg_sample_coordinates, _ = depth2pts_outside(
            sample_origins, sample_directions,
            depths_coarse)  # [..., N_samples, 4]

        out = self.run_model(bg_planes, decoder, bg_sample_coordinates,
                             sample_directions.reshape(batch_size, -1, 3),
                             rendering_options)

        colors_coarse = out['rgb']
        densities_coarse = out['sigma']
        colors_coarse = colors_coarse.reshape(batch_size, num_rays,
                                              samples_per_ray,
                                              colors_coarse.shape[-1])
        densities_coarse = densities_coarse.reshape(batch_size, num_rays,
                                                    samples_per_ray, 1)

        rgb_final, depth_final, _, weights = self.ray_marcher(
            colors_coarse, densities_coarse, depths_coarse, rendering_options)

        ret_dict = {
            'feature_samples': rgb_final,
            'depth_samples': depth_final,
            'weights_samples': weights.sum(2),
            # 'visibility': visibility  # T[..., -1]
        }

        return ret_dict

    def forward(self,
                planes,
                decoder,
                ray_origins,
                ray_directions,
                rendering_options,
                return_meta=False):

        fg_planes, bg_planes = torch.split(
            planes, planes.shape[2] // 2,
            dim=2)  # concatenated on the Channel side

        # ! composite fg/bg
        fg_ret_dict = super().forward(fg_planes,
                                      decoder,
                                      ray_origins,
                                      ray_directions,
                                      rendering_options,
                                      return_meta=False)

        bg_ret_dict = self.forward_background(
            bg_planes,
            decoder,
            ray_origins,
            ray_directions,
            rendering_options,
        )

        ret_dict = {**fg_ret_dict, 'bg_ret_dict': bg_ret_dict}  # for compat

        return ret_dict  # will composite in the external triplane.py