Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,537 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# dpt head implementation for DUST3R
# Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ;
# or if it takes as input the output at every layer, the attribute return_all_layers should be set to True
# the forward function also takes as input a dictionnary img_info with key "height" and "width"
# for PixelwiseTask, the output will be of dimension B x num_channels x H x W
# --------------------------------------------------------
from einops import rearrange
from typing import List
import torch
import torch.nn as nn
from utils.dust3r.heads.postprocess import postprocess
# import utils.dust3r.utils.path_to_croco # noqa: F401
from utils.dust3r.dpt_block import DPTOutputAdapter # noqa
from pdb import set_trace as st
class DPTOutputAdapter_fix(DPTOutputAdapter):
"""
Adapt croco's DPTOutputAdapter implementation for dust3r:
remove duplicated weigths, and fix forward for dust3r
"""
def init(self, dim_tokens_enc=768):
super().init(dim_tokens_enc)
# these are duplicated weights
del self.act_1_postprocess
del self.act_2_postprocess
del self.act_3_postprocess
del self.act_4_postprocess
def forward(self, encoder_tokens: List[torch.Tensor], image_size=None):
assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first'
# H, W = input_info['image_size']
image_size = self.image_size if image_size is None else image_size
H, W = image_size
# Number of patches in height and width
N_H = H // (self.stride_level * self.P_H)
N_W = W // (self.stride_level * self.P_W)
# Hook decoder onto 4 layers from specified ViT layers
layers = [encoder_tokens[hook] for hook in self.hooks]
# Extract only task-relevant tokens and ignore global tokens.
layers = [self.adapt_tokens(l) for l in layers]
# Reshape tokens to spatial representation
layers = [
rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W)
for l in layers
]
# st()
layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)]
# Project layers to chosen feature dim
layers = [
self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)
]
# Fuse layers using refinement stages
path_4 = self.scratch.refinenet4(
layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]]
path_3 = self.scratch.refinenet3(path_4, layers[2])
path_2 = self.scratch.refinenet2(path_3, layers[1])
path_1 = self.scratch.refinenet1(path_2, layers[0])
# Output head
out = self.head(path_1)
return out
class PixelwiseTaskWithDPT(nn.Module):
""" DPT module for dust3r, can return 3D points + confidence for all pixels"""
def __init__(self,
*,
n_cls_token=0,
hooks_idx=None,
dim_tokens=None,
output_width_ratio=1,
num_channels=1,
postprocess=None,
depth_mode=None,
conf_mode=None,
**kwargs):
super(PixelwiseTaskWithDPT, self).__init__()
self.return_all_layers = True # backbone needs to return all layers
self.postprocess = postprocess
self.depth_mode = depth_mode
self.conf_mode = conf_mode
assert n_cls_token == 0, "Not implemented"
dpt_args = dict(output_width_ratio=output_width_ratio,
num_channels=num_channels,
**kwargs)
if hooks_idx is not None:
dpt_args.update(hooks=hooks_idx)
self.dpt = DPTOutputAdapter_fix(**dpt_args)
dpt_init_args = {} if dim_tokens is None else {
'dim_tokens_enc': dim_tokens
}
self.dpt.init(**dpt_init_args)
# ! remove unused param
del self.dpt.scratch.refinenet4.resConfUnit1
def forward(self, x, img_info):
out = self.dpt(x, image_size=(img_info[0], img_info[1]))
if self.postprocess:
out = self.postprocess(out, self.depth_mode, self.conf_mode)
return out
def create_dpt_head(net, has_conf=False):
"""
return PixelwiseTaskWithDPT for given net params
"""
assert net.dec_depth > 9
l2 = net.dec_depth
feature_dim = 256
last_dim = feature_dim // 2
out_nchan = 3
ed = net.enc_embed_dim
dd = net.dec_embed_dim
return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf,
feature_dim=feature_dim,
last_dim=last_dim,
hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2],
dim_tokens=[ed, dd, dd, dd],
postprocess=postprocess,
# postprocess=None,
depth_mode=net.depth_mode,
conf_mode=net.conf_mode,
head_type='regression')
# def create_dpt_head_ln3diff(net, has_conf=False):
def create_dpt_head_ln3diff(out_nchan, feature_dim, l2, dec_embed_dim,
patch_size=2, has_conf=False):
"""
return PixelwiseTaskWithDPT for given net params
"""
# assert net.dec_depth > 9
# l2 = net.dec_depth
# feature_dim = 256
last_dim = feature_dim // 2
# out_nchan = 3
# ed = net.enc_embed_dim
# dd = net.dec_embed_dim
dd = dec_embed_dim
return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf,
feature_dim=feature_dim,
last_dim=last_dim,
patch_size=patch_size,
hooks_idx=[(l2 * 1 // 4)-1, (l2 * 2 // 4)-1, (l2 * 3 // 4)-1, l2-1],
# dim_tokens=[ed, dd, dd, dd],
dim_tokens=[dd, dd, dd, dd],
# postprocess=postprocess,
postprocess=None,
# depth_mode=net.depth_mode,
# conf_mode=net.conf_mode,
head_type='regression_gs')
|