File size: 25,888 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import torch.nn as nn
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from pdb import set_trace as st

from ldm.modules.attention import MemoryEfficientCrossAttention
from .dit_models_xformers import DiT, get_2d_sincos_pos_embed, ImageCondDiTBlock, FinalLayer, CaptionEmbedder, approx_gelu, ImageCondDiTBlockPixelArt, t2i_modulate, ImageCondDiTBlockPixelArtRMSNorm, T2IFinalLayer, ImageCondDiTBlockPixelArtRMSNormNoClip
from apex.normalization import FusedLayerNorm as LayerNorm
from apex.normalization import FusedRMSNorm as RMSNorm
from timm.models.vision_transformer import Mlp

# from vit.vit_triplane import XYZPosEmbed


class DiT_I23D(DiT):
    # DiT with 3D_aware operations
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
        mixing_logit_init=-3,
        mixed_prediction=True,
        context_dim=False,
        pooling_ctx_dim=768,
        roll_out=False,
        vit_blk=ImageCondDiTBlock,
        final_layer_blk=T2IFinalLayer,
    ):
        # st()

        super().__init__(input_size, patch_size, in_channels, hidden_size,
                         depth, num_heads, mlp_ratio, class_dropout_prob,
                         num_classes, learn_sigma, mixing_logit_init,
                         mixed_prediction, context_dim, roll_out, vit_blk,
                         T2IFinalLayer)

        assert self.roll_out

        # if context_dim is not None:
        # self.dino_proj = CaptionEmbedder(context_dim,
        self.clip_ctx_dim = 1024 # vit-l
        # self.dino_proj = CaptionEmbedder(self.clip_ctx_dim, # ! dino-vitl/14 here, for img-cond
        self.dino_proj = CaptionEmbedder(context_dim, # ! dino-vitb/14 here, for MV-cond. hard coded for now...
        # self.dino_proj = CaptionEmbedder(1024, # ! dino-vitb/14 here, for MV-cond. hard coded for now...
                                                hidden_size,
                                                act_layer=approx_gelu)

        self.clip_spatial_proj = CaptionEmbedder(1024, # clip_I-L
                                                hidden_size,
                                                act_layer=approx_gelu)

    def init_PE_3D_aware(self):

        self.pos_embed = nn.Parameter(torch.zeros(
            1, self.plane_n * self.x_embedder.num_patches, self.embed_dim),
                                      requires_grad=False)

        # Initialize (and freeze) pos_embed by sin-cos embedding:
        p = int(self.x_embedder.num_patches**0.5)
        D = self.pos_embed.shape[-1]
        grid_size = (self.plane_n, p * p)  # B n HW C

        pos_embed = get_2d_sincos_pos_embed(D, grid_size).reshape(
            self.plane_n * p * p, D)  # H*W, D

        self.pos_embed.data.copy_(
            torch.from_numpy(pos_embed).float().unsqueeze(0))

    def initialize_weights(self):
        super().initialize_weights()

        # ! add 3d-aware PE
        self.init_PE_3D_aware()

    def forward(self,
                x,
                timesteps=None,
                context=None,
                y=None,
                get_attr='',
                **kwargs):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        # t = timesteps
        assert isinstance(context, dict)
        # context = self.clip_text_proj(context)
        clip_cls_token = self.clip_text_proj(context['vector'])
        clip_spatial_token, dino_spatial_token = context['crossattn'][..., :self.clip_ctx_dim], self.dino_proj(context['crossattn'][..., self.clip_ctx_dim:])

        t = self.t_embedder(timesteps) + clip_cls_token  # (N, D)
        # ! todo, return spatial clip features.

        # if self.roll_out:  # !
        x = rearrange(x, 'b (c n) h w->(b n) c h w',
                      n=3)  # downsample with same conv
        x = self.x_embedder(x)  # (b n) c h/f w/f

        x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
        x = x + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2

        # if self.roll_out:  # ! roll-out in the L dim, not B dim. add condition to all tokens.
        # x = rearrange(x, '(b n) l c ->b (n l) c', n=3)

        # assert context.ndim == 2
        # if isinstance(context, dict):
        #     context = context['crossattn']  # sgm conditioner compat


        # c = t + context
        # else:
        # c = t  # BS 1024

        for blk_idx, block in enumerate(self.blocks):
            x = block(x, t, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token)  # (N, T, D)

        # todo later
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)

        x = self.unpatchify(x)  # (N, out_channels, H, W)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)
            # x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3)

        # cast to float32 for better accuracy
        x = x.to(torch.float32).contiguous()

        return x

    # ! compat issue
    def forward_with_cfg(self, x, t, context, cfg_scale):
        """
        Forward pass of SiT, but also batches the unconSiTional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        # half = x[: len(x) // 2]
        # combined = torch.cat([half, half], dim=0)
        eps = self.forward(x, t, context)
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        # eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return eps




class DiT_I23D_PixelArt(DiT_I23D):
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
        mixing_logit_init=-3,
        mixed_prediction=True,
        context_dim=False,
        pooling_ctx_dim=768,
        roll_out=False,
        vit_blk=ImageCondDiTBlockPixelArtRMSNorm,
        final_layer_blk=FinalLayer,
    ):
        # st()
        super().__init__(input_size, patch_size, in_channels, hidden_size,
                         depth, num_heads, mlp_ratio, class_dropout_prob,
                         num_classes, learn_sigma, mixing_logit_init,
                        #  mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
                         mixed_prediction, context_dim, pooling_ctx_dim, roll_out, vit_blk,
                         final_layer_blk)

        # ! a shared one
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))

        # ! single
        nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.adaLN_modulation[-1].bias, 0)

        del self.clip_text_proj
        self.cap_embedder = nn.Sequential( # TODO, init with zero here.
            LayerNorm(pooling_ctx_dim),
            nn.Linear(
                pooling_ctx_dim,
                hidden_size,
            ),
        )

        nn.init.constant_(self.cap_embedder[-1].weight, 0)
        nn.init.constant_(self.cap_embedder[-1].bias, 0)

        print(self) # check model arch

        self.attention_y_norm = RMSNorm(
            1024, eps=1e-5
        )  # https://github.com/Alpha-VLLM/Lumina-T2X/blob/0c8dd6a07a3b7c18da3d91f37b1e00e7ae661293/lumina_t2i/models/model.py#L570C9-L570C61


    def forward(self,
                x,
                timesteps=None,
                context=None,
                y=None,
                get_attr='',
                **kwargs):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        # t = timesteps
        assert isinstance(context, dict)
        # context = self.clip_text_proj(context)
        clip_cls_token = self.cap_embedder(context['vector'])
        clip_spatial_token, dino_spatial_token = context['crossattn'][..., :self.clip_ctx_dim], self.dino_proj(context['crossattn'][..., self.clip_ctx_dim:])
        clip_spatial_token = self.attention_y_norm(clip_spatial_token) # avoid re-normalization in each blk

        t = self.t_embedder(timesteps) + clip_cls_token  # (N, D)
        t0 = self.adaLN_modulation(t) # single-adaLN, B 6144

        # if self.roll_out:  # !
        x = rearrange(x, 'b (c n) h w->(b n) c h w',
                      n=3)  # downsample with same conv
        x = self.x_embedder(x)  # (b n) c h/f w/f

        x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
        x = x + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2

        # if self.roll_out:  # ! roll-out in the L dim, not B dim. add condition to all tokens.
        # x = rearrange(x, '(b n) l c ->b (n l) c', n=3)

        # assert context.ndim == 2
        # if isinstance(context, dict):
        #     context = context['crossattn']  # sgm conditioner compat


        # c = t + context
        # else:
        # c = t  # BS 1024

        for blk_idx, block in enumerate(self.blocks):
            x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token)  # (N, T, D)

        # todo later
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)

        x = self.unpatchify(x)  # (N, out_channels, H, W)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)
            # x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3)

        # cast to float32 for better accuracy
        x = x.to(torch.float32).contiguous()

        return x


class DiT_I23D_PixelArt_MVCond(DiT_I23D_PixelArt):
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
        mixing_logit_init=-3,
        mixed_prediction=True,
        context_dim=False,
        pooling_ctx_dim=768,
        roll_out=False,
        vit_blk=ImageCondDiTBlockPixelArt,
        final_layer_blk=FinalLayer,
    ):
        super().__init__(input_size, patch_size, in_channels, hidden_size,
                         depth, num_heads, mlp_ratio, class_dropout_prob,
                         num_classes, learn_sigma, mixing_logit_init,
                        #  mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
                         mixed_prediction, context_dim,
                         pooling_ctx_dim, roll_out, ImageCondDiTBlockPixelArtRMSNorm,
                         final_layer_blk)


        # support multi-view img condition
        # DINO handles global pooling here; clip takes care of camera-cond with ModLN
        # Input DINO concat also + global pool. InstantMesh adopts DINO (but CA).
        # expected: support dynamic numbers of frames? since CA, shall be capable of. Any number of context window size.
        del self.dino_proj

    def forward(self,
                x,
                timesteps=None,
                context=None,
                y=None,
                get_attr='',
                **kwargs):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        # t = timesteps
        assert isinstance(context, dict)

        # st()
        # (Pdb) p context.keys()
        # dict_keys(['crossattn', 'vector', 'concat'])
        # (Pdb) p context['vector'].shape
        # torch.Size([2, 768])
        # (Pdb) p context['crossattn'].shape
        # torch.Size([2, 256, 1024])
        # (Pdb) p context['concat'].shape
        # torch.Size([2, 4, 256, 768]) # mv dino spatial features

        # ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj)
        # DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk)
        clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit
        dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features.

        t = self.t_embedder(timesteps) + clip_cls_token  # (N, D)
        t0 = self.adaLN_modulation(t) # single-adaLN, B 6144

        # if self.roll_out:  # !
        x = rearrange(x, 'b (c n) h w->(b n) c h w',
                      n=3)  # downsample with same conv
        x = self.x_embedder(x)  # (b n) c h/f w/f

        x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
        x = x + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2

        for blk_idx, block in enumerate(self.blocks):
            # x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token)  # (N, T, D)
            # ! DINO tokens for CA, CLIP tokens for append here.
            x = block(x, t0, dino_spatial_token=clip_spatial_token, clip_spatial_token=dino_spatial_token)  # (N, T, D)

        # todo later
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)

        x = self.unpatchify(x)  # (N, out_channels, H, W)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)

        x = x.to(torch.float32).contiguous()

        return x


class DiT_I23D_PixelArt_MVCond_noClip(DiT_I23D_PixelArt):
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
        mixing_logit_init=-3,
        mixed_prediction=True,
        context_dim=False,
        pooling_ctx_dim=768,
        roll_out=False,
        vit_blk=ImageCondDiTBlockPixelArt,
        final_layer_blk=FinalLayer,
    ):
        super().__init__(input_size, patch_size, in_channels, hidden_size,
                         depth, num_heads, mlp_ratio, class_dropout_prob,
                         num_classes, learn_sigma, mixing_logit_init,
                        #  mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
                         mixed_prediction, context_dim,
                         pooling_ctx_dim, roll_out, 
                         ImageCondDiTBlockPixelArtRMSNormNoClip,
                         final_layer_blk)


        # support multi-view img condition
        # DINO handles global pooling here; clip takes care of camera-cond with ModLN
        # Input DINO concat also + global pool. InstantMesh adopts DINO (but CA).
        # expected: support dynamic numbers of frames? since CA, shall be capable of. Any number of context window size.

        del self.dino_proj
        del self.clip_spatial_proj, self.cap_embedder # no clip required

    def forward(self,
                x,
                timesteps=None,
                context=None,
                y=None,
                get_attr='',
                **kwargs):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        # t = timesteps
        assert isinstance(context, dict)

        # st()
        # (Pdb) p context.keys()
        # dict_keys(['crossattn', 'vector', 'concat'])
        # (Pdb) p context['vector'].shape
        # torch.Size([2, 768])
        # (Pdb) p context['crossattn'].shape
        # torch.Size([2, 256, 1024])
        # (Pdb) p context['concat'].shape
        # torch.Size([2, 4, 256, 768]) # mv dino spatial features

        # ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj)
        # DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk)
        # clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit
        dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features.

        # t = self.t_embedder(timesteps) + clip_cls_token  # (N, D)
        t = self.t_embedder(timesteps)
        t0 = self.adaLN_modulation(t) # single-adaLN, B 6144

        # if self.roll_out:  # !
        x = rearrange(x, 'b (c n) h w->(b n) c h w',
                      n=3)  # downsample with same conv
        x = self.x_embedder(x)  # (b n) c h/f w/f

        x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
        x = x + self.pos_embed  # (N, T, D), where T = H * W / patch_size ** 2

        for blk_idx, block in enumerate(self.blocks):
            # x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token)  # (N, T, D)
            # ! DINO tokens for CA, CLIP tokens for append here.
            x = block(x, t0, dino_spatial_token=dino_spatial_token)  # (N, T, D)

        # todo later
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)

        x = self.unpatchify(x)  # (N, out_channels, H, W)

        if self.roll_out:  # move n from L to B axis
            x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)

        x = x.to(torch.float32).contiguous()

        return x





# pcd-structured latent ddpm

class DiT_pcd_I23D_PixelArt_MVCond(DiT_I23D_PixelArt_MVCond):
    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4,
        class_dropout_prob=0.1,
        num_classes=1000,
        learn_sigma=True,
        mixing_logit_init=-3,
        mixed_prediction=True,
        context_dim=False,
        pooling_ctx_dim=768,
        roll_out=False,
        vit_blk=ImageCondDiTBlockPixelArt,
        final_layer_blk=FinalLayer,
    ):
        super().__init__(input_size, patch_size, in_channels, hidden_size,
                         depth, num_heads, mlp_ratio, class_dropout_prob,
                         num_classes, learn_sigma, mixing_logit_init,
                        #  mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
                         mixed_prediction, context_dim,
                         pooling_ctx_dim,
                          roll_out, ImageCondDiTBlockPixelArtRMSNorm,
                         final_layer_blk)
        # ! first, normalize xyz from [-0.45,0.45] to [-1,1]
        # Then, encode xyz with point fourier feat + MLP projection, serves as PE here.
        # a separate MLP for the KL feature
        # add them together in the feature space
        # use a single MLP (final_layer) to map them back to 16 + 3 dims.
        self.x_embedder = Mlp(in_features=in_channels,
                          hidden_features=hidden_size,
                          out_features=hidden_size,
                          act_layer=approx_gelu,
                          drop=0)
        del self.pos_embed


    def forward(self,
                x,
                timesteps=None,
                context=None,
                y=None,
                get_attr='',
                **kwargs):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        # t = timesteps
        assert isinstance(context, dict)

        # st()
        # (Pdb) p context.keys()
        # dict_keys(['crossattn', 'vector', 'concat'])
        # (Pdb) p context['vector'].shape
        # torch.Size([2, 768])
        # (Pdb) p context['crossattn'].shape
        # torch.Size([2, 256, 1024])
        # (Pdb) p context['concat'].shape
        # torch.Size([2, 4, 256, 768]) # mv dino spatial features

        # ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj)
        # DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk)
        clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit
        dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features.

        t = self.t_embedder(timesteps) + clip_cls_token  # (N, D)
        t0 = self.adaLN_modulation(t) # single-adaLN, B 6144

        x = self.x_embedder(x)

        for blk_idx, block in enumerate(self.blocks):
            # x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token)  # (N, T, D)
            # ! DINO tokens for CA, CLIP tokens for append here.
            x = block(x, t0, dino_spatial_token=clip_spatial_token, clip_spatial_token=dino_spatial_token)  # (N, T, D)

        # todo later
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)

        x = x.to(torch.float32).contiguous()

        return x



#################################################################################
#                                   DiT_I23D Configs                                  #
#################################################################################


def DiT_XL_2(**kwargs):
    return DiT_I23D(depth=28,
                         hidden_size=1152,
                         patch_size=2,
                         num_heads=16,
                         **kwargs)


def DiT_L_2(**kwargs):
    return DiT_I23D(depth=24,
                         hidden_size=1024,
                         patch_size=2,
                         num_heads=16,
                         **kwargs)


def DiT_B_2(**kwargs):
    return DiT_I23D(depth=12,
                         hidden_size=768,
                         patch_size=2,
                         num_heads=12,
                         **kwargs)


def DiT_B_1(**kwargs):
    return DiT_I23D(depth=12,
                         hidden_size=768,
                         patch_size=1,
                         num_heads=12,
                         **kwargs)


def DiT_L_Pixelart_2(**kwargs):
    return DiT_I23D_PixelArt(depth=24,
                         hidden_size=1024,
                         patch_size=2,
                         num_heads=16,
                         **kwargs)


def DiT_B_Pixelart_2(**kwargs):
    return DiT_I23D_PixelArt(depth=12,
                         hidden_size=768,
                         patch_size=2,
                         num_heads=12,
                         **kwargs)

def DiT_L_Pixelart_MV_2(**kwargs):
    return DiT_I23D_PixelArt_MVCond(depth=24,
                         hidden_size=1024,
                         patch_size=2,
                         num_heads=16,
                         **kwargs)

def DiT_L_Pixelart_MV_2_noclip(**kwargs):
    return DiT_I23D_PixelArt_MVCond_noClip(depth=24,
                         hidden_size=1024,
                         patch_size=2,
                         num_heads=16,
                         **kwargs)

def DiT_XL_Pixelart_MV_2(**kwargs):
    return DiT_I23D_PixelArt_MVCond(depth=28,
                         hidden_size=1152,
                         patch_size=2,
                         num_heads=16,
                         **kwargs)



def DiT_B_Pixelart_MV_2(**kwargs):
    return DiT_I23D_PixelArt_MVCond(depth=12,
                         hidden_size=768,
                         patch_size=2,
                         num_heads=12,
                         **kwargs)

# pcd latent 

def DiT_L_Pixelart_MV_pcd(**kwargs):
    return DiT_pcd_I23D_PixelArt_MVCond(depth=24,
                         hidden_size=1024,
                         patch_size=1, # no spatial compression here
                         num_heads=16,
                         **kwargs)



DiT_models = {
    'DiT-XL/2': DiT_XL_2,
    'DiT-L/2': DiT_L_2,
    'DiT-B/2': DiT_B_2,
    'DiT-B/1': DiT_B_1,
    'DiT-PixArt-L/2': DiT_L_Pixelart_2,
    'DiT-PixArt-MV-XL/2': DiT_XL_Pixelart_MV_2,
    # 'DiT-PixArt-MV-L/2': DiT_L_Pixelart_MV_2,
    'DiT-PixArt-MV-L/2': DiT_L_Pixelart_MV_2_noclip,
    'DiT-PixArt-MV-PCD-L': DiT_L_Pixelart_MV_pcd,
    'DiT-PixArt-MV-B/2': DiT_B_Pixelart_MV_2,
    'DiT-PixArt-B/2': DiT_B_Pixelart_2,
}