Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,888 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import torch.nn as nn
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from pdb import set_trace as st
from ldm.modules.attention import MemoryEfficientCrossAttention
from .dit_models_xformers import DiT, get_2d_sincos_pos_embed, ImageCondDiTBlock, FinalLayer, CaptionEmbedder, approx_gelu, ImageCondDiTBlockPixelArt, t2i_modulate, ImageCondDiTBlockPixelArtRMSNorm, T2IFinalLayer, ImageCondDiTBlockPixelArtRMSNormNoClip
from apex.normalization import FusedLayerNorm as LayerNorm
from apex.normalization import FusedRMSNorm as RMSNorm
from timm.models.vision_transformer import Mlp
# from vit.vit_triplane import XYZPosEmbed
class DiT_I23D(DiT):
# DiT with 3D_aware operations
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
mixing_logit_init=-3,
mixed_prediction=True,
context_dim=False,
pooling_ctx_dim=768,
roll_out=False,
vit_blk=ImageCondDiTBlock,
final_layer_blk=T2IFinalLayer,
):
# st()
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma, mixing_logit_init,
mixed_prediction, context_dim, roll_out, vit_blk,
T2IFinalLayer)
assert self.roll_out
# if context_dim is not None:
# self.dino_proj = CaptionEmbedder(context_dim,
self.clip_ctx_dim = 1024 # vit-l
# self.dino_proj = CaptionEmbedder(self.clip_ctx_dim, # ! dino-vitl/14 here, for img-cond
self.dino_proj = CaptionEmbedder(context_dim, # ! dino-vitb/14 here, for MV-cond. hard coded for now...
# self.dino_proj = CaptionEmbedder(1024, # ! dino-vitb/14 here, for MV-cond. hard coded for now...
hidden_size,
act_layer=approx_gelu)
self.clip_spatial_proj = CaptionEmbedder(1024, # clip_I-L
hidden_size,
act_layer=approx_gelu)
def init_PE_3D_aware(self):
self.pos_embed = nn.Parameter(torch.zeros(
1, self.plane_n * self.x_embedder.num_patches, self.embed_dim),
requires_grad=False)
# Initialize (and freeze) pos_embed by sin-cos embedding:
p = int(self.x_embedder.num_patches**0.5)
D = self.pos_embed.shape[-1]
grid_size = (self.plane_n, p * p) # B n HW C
pos_embed = get_2d_sincos_pos_embed(D, grid_size).reshape(
self.plane_n * p * p, D) # H*W, D
self.pos_embed.data.copy_(
torch.from_numpy(pos_embed).float().unsqueeze(0))
def initialize_weights(self):
super().initialize_weights()
# ! add 3d-aware PE
self.init_PE_3D_aware()
def forward(self,
x,
timesteps=None,
context=None,
y=None,
get_attr='',
**kwargs):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# t = timesteps
assert isinstance(context, dict)
# context = self.clip_text_proj(context)
clip_cls_token = self.clip_text_proj(context['vector'])
clip_spatial_token, dino_spatial_token = context['crossattn'][..., :self.clip_ctx_dim], self.dino_proj(context['crossattn'][..., self.clip_ctx_dim:])
t = self.t_embedder(timesteps) + clip_cls_token # (N, D)
# ! todo, return spatial clip features.
# if self.roll_out: # !
x = rearrange(x, 'b (c n) h w->(b n) c h w',
n=3) # downsample with same conv
x = self.x_embedder(x) # (b n) c h/f w/f
x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
# if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens.
# x = rearrange(x, '(b n) l c ->b (n l) c', n=3)
# assert context.ndim == 2
# if isinstance(context, dict):
# context = context['crossattn'] # sgm conditioner compat
# c = t + context
# else:
# c = t # BS 1024
for blk_idx, block in enumerate(self.blocks):
x = block(x, t, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D)
# todo later
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
if self.roll_out: # move n from L to B axis
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)
x = self.unpatchify(x) # (N, out_channels, H, W)
if self.roll_out: # move n from L to B axis
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)
# x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3)
# cast to float32 for better accuracy
x = x.to(torch.float32).contiguous()
return x
# ! compat issue
def forward_with_cfg(self, x, t, context, cfg_scale):
"""
Forward pass of SiT, but also batches the unconSiTional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
# half = x[: len(x) // 2]
# combined = torch.cat([half, half], dim=0)
eps = self.forward(x, t, context)
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
# eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return eps
class DiT_I23D_PixelArt(DiT_I23D):
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
mixing_logit_init=-3,
mixed_prediction=True,
context_dim=False,
pooling_ctx_dim=768,
roll_out=False,
vit_blk=ImageCondDiTBlockPixelArtRMSNorm,
final_layer_blk=FinalLayer,
):
# st()
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma, mixing_logit_init,
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
mixed_prediction, context_dim, pooling_ctx_dim, roll_out, vit_blk,
final_layer_blk)
# ! a shared one
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
# ! single
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
del self.clip_text_proj
self.cap_embedder = nn.Sequential( # TODO, init with zero here.
LayerNorm(pooling_ctx_dim),
nn.Linear(
pooling_ctx_dim,
hidden_size,
),
)
nn.init.constant_(self.cap_embedder[-1].weight, 0)
nn.init.constant_(self.cap_embedder[-1].bias, 0)
print(self) # check model arch
self.attention_y_norm = RMSNorm(
1024, eps=1e-5
) # https://github.com/Alpha-VLLM/Lumina-T2X/blob/0c8dd6a07a3b7c18da3d91f37b1e00e7ae661293/lumina_t2i/models/model.py#L570C9-L570C61
def forward(self,
x,
timesteps=None,
context=None,
y=None,
get_attr='',
**kwargs):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# t = timesteps
assert isinstance(context, dict)
# context = self.clip_text_proj(context)
clip_cls_token = self.cap_embedder(context['vector'])
clip_spatial_token, dino_spatial_token = context['crossattn'][..., :self.clip_ctx_dim], self.dino_proj(context['crossattn'][..., self.clip_ctx_dim:])
clip_spatial_token = self.attention_y_norm(clip_spatial_token) # avoid re-normalization in each blk
t = self.t_embedder(timesteps) + clip_cls_token # (N, D)
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144
# if self.roll_out: # !
x = rearrange(x, 'b (c n) h w->(b n) c h w',
n=3) # downsample with same conv
x = self.x_embedder(x) # (b n) c h/f w/f
x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
# if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens.
# x = rearrange(x, '(b n) l c ->b (n l) c', n=3)
# assert context.ndim == 2
# if isinstance(context, dict):
# context = context['crossattn'] # sgm conditioner compat
# c = t + context
# else:
# c = t # BS 1024
for blk_idx, block in enumerate(self.blocks):
x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D)
# todo later
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
if self.roll_out: # move n from L to B axis
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)
x = self.unpatchify(x) # (N, out_channels, H, W)
if self.roll_out: # move n from L to B axis
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)
# x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3)
# cast to float32 for better accuracy
x = x.to(torch.float32).contiguous()
return x
class DiT_I23D_PixelArt_MVCond(DiT_I23D_PixelArt):
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
mixing_logit_init=-3,
mixed_prediction=True,
context_dim=False,
pooling_ctx_dim=768,
roll_out=False,
vit_blk=ImageCondDiTBlockPixelArt,
final_layer_blk=FinalLayer,
):
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma, mixing_logit_init,
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
mixed_prediction, context_dim,
pooling_ctx_dim, roll_out, ImageCondDiTBlockPixelArtRMSNorm,
final_layer_blk)
# support multi-view img condition
# DINO handles global pooling here; clip takes care of camera-cond with ModLN
# Input DINO concat also + global pool. InstantMesh adopts DINO (but CA).
# expected: support dynamic numbers of frames? since CA, shall be capable of. Any number of context window size.
del self.dino_proj
def forward(self,
x,
timesteps=None,
context=None,
y=None,
get_attr='',
**kwargs):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# t = timesteps
assert isinstance(context, dict)
# st()
# (Pdb) p context.keys()
# dict_keys(['crossattn', 'vector', 'concat'])
# (Pdb) p context['vector'].shape
# torch.Size([2, 768])
# (Pdb) p context['crossattn'].shape
# torch.Size([2, 256, 1024])
# (Pdb) p context['concat'].shape
# torch.Size([2, 4, 256, 768]) # mv dino spatial features
# ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj)
# DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk)
clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit
dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features.
t = self.t_embedder(timesteps) + clip_cls_token # (N, D)
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144
# if self.roll_out: # !
x = rearrange(x, 'b (c n) h w->(b n) c h w',
n=3) # downsample with same conv
x = self.x_embedder(x) # (b n) c h/f w/f
x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
for blk_idx, block in enumerate(self.blocks):
# x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D)
# ! DINO tokens for CA, CLIP tokens for append here.
x = block(x, t0, dino_spatial_token=clip_spatial_token, clip_spatial_token=dino_spatial_token) # (N, T, D)
# todo later
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
if self.roll_out: # move n from L to B axis
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)
x = self.unpatchify(x) # (N, out_channels, H, W)
if self.roll_out: # move n from L to B axis
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)
x = x.to(torch.float32).contiguous()
return x
class DiT_I23D_PixelArt_MVCond_noClip(DiT_I23D_PixelArt):
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
mixing_logit_init=-3,
mixed_prediction=True,
context_dim=False,
pooling_ctx_dim=768,
roll_out=False,
vit_blk=ImageCondDiTBlockPixelArt,
final_layer_blk=FinalLayer,
):
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma, mixing_logit_init,
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
mixed_prediction, context_dim,
pooling_ctx_dim, roll_out,
ImageCondDiTBlockPixelArtRMSNormNoClip,
final_layer_blk)
# support multi-view img condition
# DINO handles global pooling here; clip takes care of camera-cond with ModLN
# Input DINO concat also + global pool. InstantMesh adopts DINO (but CA).
# expected: support dynamic numbers of frames? since CA, shall be capable of. Any number of context window size.
del self.dino_proj
del self.clip_spatial_proj, self.cap_embedder # no clip required
def forward(self,
x,
timesteps=None,
context=None,
y=None,
get_attr='',
**kwargs):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# t = timesteps
assert isinstance(context, dict)
# st()
# (Pdb) p context.keys()
# dict_keys(['crossattn', 'vector', 'concat'])
# (Pdb) p context['vector'].shape
# torch.Size([2, 768])
# (Pdb) p context['crossattn'].shape
# torch.Size([2, 256, 1024])
# (Pdb) p context['concat'].shape
# torch.Size([2, 4, 256, 768]) # mv dino spatial features
# ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj)
# DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk)
# clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit
dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features.
# t = self.t_embedder(timesteps) + clip_cls_token # (N, D)
t = self.t_embedder(timesteps)
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144
# if self.roll_out: # !
x = rearrange(x, 'b (c n) h w->(b n) c h w',
n=3) # downsample with same conv
x = self.x_embedder(x) # (b n) c h/f w/f
x = rearrange(x, '(b n) l c -> b (n l) c', n=3)
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
for blk_idx, block in enumerate(self.blocks):
# x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D)
# ! DINO tokens for CA, CLIP tokens for append here.
x = block(x, t0, dino_spatial_token=dino_spatial_token) # (N, T, D)
# todo later
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
if self.roll_out: # move n from L to B axis
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3)
x = self.unpatchify(x) # (N, out_channels, H, W)
if self.roll_out: # move n from L to B axis
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3)
x = x.to(torch.float32).contiguous()
return x
# pcd-structured latent ddpm
class DiT_pcd_I23D_PixelArt_MVCond(DiT_I23D_PixelArt_MVCond):
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
mixing_logit_init=-3,
mixed_prediction=True,
context_dim=False,
pooling_ctx_dim=768,
roll_out=False,
vit_blk=ImageCondDiTBlockPixelArt,
final_layer_blk=FinalLayer,
):
super().__init__(input_size, patch_size, in_channels, hidden_size,
depth, num_heads, mlp_ratio, class_dropout_prob,
num_classes, learn_sigma, mixing_logit_init,
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt,
mixed_prediction, context_dim,
pooling_ctx_dim,
roll_out, ImageCondDiTBlockPixelArtRMSNorm,
final_layer_blk)
# ! first, normalize xyz from [-0.45,0.45] to [-1,1]
# Then, encode xyz with point fourier feat + MLP projection, serves as PE here.
# a separate MLP for the KL feature
# add them together in the feature space
# use a single MLP (final_layer) to map them back to 16 + 3 dims.
self.x_embedder = Mlp(in_features=in_channels,
hidden_features=hidden_size,
out_features=hidden_size,
act_layer=approx_gelu,
drop=0)
del self.pos_embed
def forward(self,
x,
timesteps=None,
context=None,
y=None,
get_attr='',
**kwargs):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# t = timesteps
assert isinstance(context, dict)
# st()
# (Pdb) p context.keys()
# dict_keys(['crossattn', 'vector', 'concat'])
# (Pdb) p context['vector'].shape
# torch.Size([2, 768])
# (Pdb) p context['crossattn'].shape
# torch.Size([2, 256, 1024])
# (Pdb) p context['concat'].shape
# torch.Size([2, 4, 256, 768]) # mv dino spatial features
# ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj)
# DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk)
clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit
dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features.
t = self.t_embedder(timesteps) + clip_cls_token # (N, D)
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144
x = self.x_embedder(x)
for blk_idx, block in enumerate(self.blocks):
# x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D)
# ! DINO tokens for CA, CLIP tokens for append here.
x = block(x, t0, dino_spatial_token=clip_spatial_token, clip_spatial_token=dino_spatial_token) # (N, T, D)
# todo later
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = x.to(torch.float32).contiguous()
return x
#################################################################################
# DiT_I23D Configs #
#################################################################################
def DiT_XL_2(**kwargs):
return DiT_I23D(depth=28,
hidden_size=1152,
patch_size=2,
num_heads=16,
**kwargs)
def DiT_L_2(**kwargs):
return DiT_I23D(depth=24,
hidden_size=1024,
patch_size=2,
num_heads=16,
**kwargs)
def DiT_B_2(**kwargs):
return DiT_I23D(depth=12,
hidden_size=768,
patch_size=2,
num_heads=12,
**kwargs)
def DiT_B_1(**kwargs):
return DiT_I23D(depth=12,
hidden_size=768,
patch_size=1,
num_heads=12,
**kwargs)
def DiT_L_Pixelart_2(**kwargs):
return DiT_I23D_PixelArt(depth=24,
hidden_size=1024,
patch_size=2,
num_heads=16,
**kwargs)
def DiT_B_Pixelart_2(**kwargs):
return DiT_I23D_PixelArt(depth=12,
hidden_size=768,
patch_size=2,
num_heads=12,
**kwargs)
def DiT_L_Pixelart_MV_2(**kwargs):
return DiT_I23D_PixelArt_MVCond(depth=24,
hidden_size=1024,
patch_size=2,
num_heads=16,
**kwargs)
def DiT_L_Pixelart_MV_2_noclip(**kwargs):
return DiT_I23D_PixelArt_MVCond_noClip(depth=24,
hidden_size=1024,
patch_size=2,
num_heads=16,
**kwargs)
def DiT_XL_Pixelart_MV_2(**kwargs):
return DiT_I23D_PixelArt_MVCond(depth=28,
hidden_size=1152,
patch_size=2,
num_heads=16,
**kwargs)
def DiT_B_Pixelart_MV_2(**kwargs):
return DiT_I23D_PixelArt_MVCond(depth=12,
hidden_size=768,
patch_size=2,
num_heads=12,
**kwargs)
# pcd latent
def DiT_L_Pixelart_MV_pcd(**kwargs):
return DiT_pcd_I23D_PixelArt_MVCond(depth=24,
hidden_size=1024,
patch_size=1, # no spatial compression here
num_heads=16,
**kwargs)
DiT_models = {
'DiT-XL/2': DiT_XL_2,
'DiT-L/2': DiT_L_2,
'DiT-B/2': DiT_B_2,
'DiT-B/1': DiT_B_1,
'DiT-PixArt-L/2': DiT_L_Pixelart_2,
'DiT-PixArt-MV-XL/2': DiT_XL_Pixelart_MV_2,
# 'DiT-PixArt-MV-L/2': DiT_L_Pixelart_MV_2,
'DiT-PixArt-MV-L/2': DiT_L_Pixelart_MV_2_noclip,
'DiT-PixArt-MV-PCD-L': DiT_L_Pixelart_MV_pcd,
'DiT-PixArt-MV-B/2': DiT_B_Pixelart_MV_2,
'DiT-PixArt-B/2': DiT_B_Pixelart_2,
}
|