File size: 6,650 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from st_keyup import st_keyup
from streamlit_helpers import *

from sgm.modules.diffusionmodules.sampling import EulerAncestralSampler

VERSION2SPECS = {
    "SDXL-Turbo": {
        "H": 512,
        "W": 512,
        "C": 4,
        "f": 8,
        "is_legacy": False,
        "config": "configs/inference/sd_xl_base.yaml",
        "ckpt": "checkpoints/sd_xl_turbo_1.0.safetensors",
    },
    "SD-Turbo": {
        "H": 512,
        "W": 512,
        "C": 4,
        "f": 8,
        "is_legacy": False,
        "config": "configs/inference/sd_2_1.yaml",
        "ckpt": "checkpoints/sd_turbo.safetensors",
    },
}


class SubstepSampler(EulerAncestralSampler):
    def __init__(self, n_sample_steps=1, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.n_sample_steps = n_sample_steps
        self.steps_subset = [0, 100, 200, 300, 1000]

    def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None):
        sigmas = self.discretization(
            self.num_steps if num_steps is None else num_steps, device=self.device
        )
        sigmas = sigmas[
            self.steps_subset[: self.n_sample_steps] + self.steps_subset[-1:]
        ]
        uc = cond
        x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
        num_sigmas = len(sigmas)
        s_in = x.new_ones([x.shape[0]])
        return x, s_in, sigmas, num_sigmas, cond, uc


def seeded_randn(shape, seed):
    randn = np.random.RandomState(seed).randn(*shape)
    randn = torch.from_numpy(randn).to(device="cuda", dtype=torch.float32)
    return randn


class SeededNoise:
    def __init__(self, seed):
        self.seed = seed

    def __call__(self, x):
        self.seed = self.seed + 1
        return seeded_randn(x.shape, self.seed)


def init_embedder_options(keys, init_dict, prompt=None, negative_prompt=None):
    value_dict = {}
    for key in keys:
        if key == "txt":
            value_dict["prompt"] = prompt
            value_dict["negative_prompt"] = ""

        if key == "original_size_as_tuple":
            orig_width = init_dict["orig_width"]
            orig_height = init_dict["orig_height"]

            value_dict["orig_width"] = orig_width
            value_dict["orig_height"] = orig_height

        if key == "crop_coords_top_left":
            crop_coord_top = 0
            crop_coord_left = 0

            value_dict["crop_coords_top"] = crop_coord_top
            value_dict["crop_coords_left"] = crop_coord_left

        if key == "aesthetic_score":
            value_dict["aesthetic_score"] = 6.0
            value_dict["negative_aesthetic_score"] = 2.5

        if key == "target_size_as_tuple":
            value_dict["target_width"] = init_dict["target_width"]
            value_dict["target_height"] = init_dict["target_height"]

    return value_dict


def sample(
    model,
    sampler,
    prompt="A lush garden with oversized flowers and vibrant colors, inhabited by miniature animals.",
    H=1024,
    W=1024,
    seed=0,
    filter=None,
):
    F = 8
    C = 4
    shape = (1, C, H // F, W // F)

    value_dict = init_embedder_options(
        keys=get_unique_embedder_keys_from_conditioner(model.conditioner),
        init_dict={
            "orig_width": W,
            "orig_height": H,
            "target_width": W,
            "target_height": H,
        },
        prompt=prompt,
    )

    if seed is None:
        seed = torch.seed()
    precision_scope = autocast
    with torch.no_grad():
        with precision_scope("cuda"):
            batch, batch_uc = get_batch(
                get_unique_embedder_keys_from_conditioner(model.conditioner),
                value_dict,
                [1],
            )
            c = model.conditioner(batch)
            uc = None
            randn = seeded_randn(shape, seed)

            def denoiser(input, sigma, c):
                return model.denoiser(
                    model.model,
                    input,
                    sigma,
                    c,
                )

            samples_z = sampler(denoiser, randn, cond=c, uc=uc)
            samples_x = model.decode_first_stage(samples_z)
            samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
            if filter is not None:
                samples = filter(samples)
            samples = (
                (255 * samples)
                .to(dtype=torch.uint8)
                .permute(0, 2, 3, 1)
                .detach()
                .cpu()
                .numpy()
            )
    return samples


def v_spacer(height) -> None:
    for _ in range(height):
        st.write("\n")


if __name__ == "__main__":
    st.title("Turbo")

    head_cols = st.columns([1, 1, 1])
    with head_cols[0]:
        version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0)
        version_dict = VERSION2SPECS[version]

    with head_cols[1]:
        v_spacer(2)
        if st.checkbox("Load Model"):
            mode = "txt2img"
        else:
            mode = "skip"

    if mode != "skip":
        state = init_st(version_dict, load_filter=True)
        if state["msg"]:
            st.info(state["msg"])
        model = state["model"]
        load_model(model)

    # seed
    if "seed" not in st.session_state:
        st.session_state.seed = 0

    def increment_counter():
        st.session_state.seed += 1

    def decrement_counter():
        if st.session_state.seed > 0:
            st.session_state.seed -= 1

    with head_cols[2]:
        n_steps = st.number_input(label="number of steps", min_value=1, max_value=4)

    sampler = SubstepSampler(
        n_sample_steps=1,
        num_steps=1000,
        eta=1.0,
        discretization_config=dict(
            target="sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization"
        ),
    )
    sampler.n_sample_steps = n_steps
    default_prompt = (
        "A cinematic shot of a baby racoon wearing an intricate italian priest robe."
    )
    prompt = st_keyup(
        "Enter a value", value=default_prompt, debounce=300, key="interactive_text"
    )

    cols = st.columns([1, 5, 1])
    if mode != "skip":
        with cols[0]:
            v_spacer(14)
            st.button("↩", on_click=decrement_counter)
        with cols[2]:
            v_spacer(14)
            st.button("↪", on_click=increment_counter)

        sampler.noise_sampler = SeededNoise(seed=st.session_state.seed)
        out = sample(
            model,
            sampler,
            H=512,
            W=512,
            seed=st.session_state.seed,
            prompt=prompt,
            filter=state.get("filter"),
        )
        with cols[1]:
            st.image(out[0])