File size: 18,269 Bytes
27ff067
 
59a6cfe
c9669c7
267d055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d83ba
 
 
 
 
 
84b10e1
cf99ccb
 
 
84b10e1
f1d83ba
84b10e1
267d055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a6cfe
267d055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf99ccb
267d055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9669c7
267d055
 
c9669c7
267d055
c9669c7
59a6cfe
27ff067
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import gradio as gr
import spaces 
import subprocess
import torch
import torchvision
from torchvision import transforms
import numpy as np

import os
from PIL import Image 
import rembg


from huggingface_hub import hf_hub_download


"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""

import argparse
import json
import sys
import os

sys.path.append('.')

from pdb import set_trace as st
import imageio
import numpy as np
import torch as th
import torch.distributed as dist

# def install_dependency():
#     # install apex
#     subprocess.run(
#         f'FORCE_CUDA=1 {sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git@master',
#         shell=True,
#     )

th.backends.cuda.matmul.allow_tf32 = True
th.backends.cudnn.allow_tf32 = True
th.backends.cudnn.enabled = True

# install_dependency()

from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
    NUM_CLASSES,
    model_and_diffusion_defaults,
    create_model_and_diffusion,
    add_dict_to_argparser,
    args_to_dict,
    continuous_diffusion_defaults,
    control_net_defaults,
)

from pathlib import Path

from tqdm import tqdm, trange
import dnnlib
from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults

from datasets.shapenet import load_eval_data
from torch.utils.data import Subset
from datasets.eg3d_dataset import init_dataset_kwargs

from transport.train_utils import parse_transport_args

from utils.infer_utils import remove_background, resize_foreground

SEED = 0


def resize_to_224(img):
    img = transforms.functional.resize(img, 224,
        interpolation=transforms.InterpolationMode.LANCZOS)
    return img


def set_white_background(image):
    image = np.array(image).astype(np.float32) / 255.0
    mask = image[:, :, 3:4]
    image = image[:, :, :3] * mask + (1 - mask)
    image = Image.fromarray((image * 255.0).astype(np.uint8))
    return image


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")



def main(args):

    # args.rendering_kwargs = rendering_options_defaults(args)

    dist_util.setup_dist(args)
    logger.configure(dir=args.logdir)

    th.cuda.empty_cache()

    th.cuda.manual_seed_all(SEED)
    np.random.seed(SEED)

    # * set denoise model args
    logger.log("creating model and diffusion...")
    args.img_size = [args.image_size_encoder]
    # ! no longer required for LDM
    # args.denoise_in_channels = args.out_chans
    # args.denoise_out_channels = args.out_chans
    args.image_size = args.image_size_encoder  # 224, follow the triplane size

    denoise_model, diffusion = create_model_and_diffusion(
        **args_to_dict(args,
                       model_and_diffusion_defaults().keys()))

    # if 'cldm' in args.trainer_name:
    #     assert isinstance(denoise_model, tuple)
    #     denoise_model, controlNet = denoise_model

    #     controlNet.to(dist_util.dev())
    #     controlNet.train()
    # else:
        # controlNet = None

    opts = eg3d_options_default()
    if args.sr_training:
        args.sr_kwargs = dnnlib.EasyDict(
            channel_base=opts.cbase,
            channel_max=opts.cmax,
            fused_modconv_default='inference_only',
            use_noise=True
        )  # ! close noise injection? since noise_mode='none' in eg3d

    # denoise_model.load_state_dict(
    #     dist_util.load_state_dict(args.ddpm_model_path, map_location="cpu"))
    denoise_model.to(dist_util.dev())
    if args.use_fp16:
        denoise_model.convert_to_fp16()
    denoise_model.eval()

    # * auto-encoder reconstruction model
    logger.log("creating 3DAE...")
    auto_encoder = create_3DAE_model(
        **args_to_dict(args,
                       encoder_and_nsr_defaults().keys()))

    auto_encoder.to(dist_util.dev())
    auto_encoder.eval()

    # TODO, how to set the scale?
    logger.log("create dataset")

    if args.objv_dataset:
        from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
    else:  # shapenet
        from datasets.shapenet import load_data, load_eval_data, load_memory_data
    
    # load data if i23d
    if args.i23d:
        data = load_eval_data(
            file_path=args.eval_data_dir,
            batch_size=args.eval_batch_size,
            reso=args.image_size,
            reso_encoder=args.image_size_encoder,  # 224 -> 128
            num_workers=args.num_workers,
            load_depth=True,  # for evaluation
            preprocess=auto_encoder.preprocess,
            **args_to_dict(args,
                            dataset_defaults().keys()))
    else:
        data = None # t23d sampling, only caption required


    TrainLoop = {
        'sgm_legacy':
        nsr.lsgm.sgm_DiffusionEngine.DiffusionEngineLSGM,
        'flow_matching':
        nsr.lsgm.flow_matching_trainer.FlowMatchingEngine,
    }[args.trainer_name]

    # continuous
    sde_diffusion = None

    auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs

    training_loop_class = TrainLoop(rec_model=auto_encoder,
                                    denoise_model=denoise_model,
                                    control_model=None, # to remove
                                    diffusion=diffusion,
                                    sde_diffusion=sde_diffusion,
                                    loss_class=None,
                                    data=data,
                                    eval_data=None,
                                    **vars(args))
    
    @spaces.GPU(duration=200)
    def reconstruct_and_export(*args, **kwargs):
        return training_loop_class.eval_i23d_and_export(*args, **kwargs)


    css = """
    h1 {
        text-align: center;
        display:block;
    }
    """


    def preprocess(input_image, preprocess_background=True, foreground_ratio=0.85):
        if preprocess_background:
            rembg_session = rembg.new_session()
            image = input_image.convert("RGB")
            image = remove_background(image, rembg_session)
            image = resize_foreground(image, foreground_ratio)
            image = set_white_background(image)
        else:
            image = input_image
            if image.mode == "RGBA":
                image = set_white_background(image)
        image = resize_to_224(image)
        return image


    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # LN3Diff (Scalable Latent Neural Fields Diffusion for Speedy 3D Generation)

            **LN3Diff (ECCV 2024)** [[code](https://github.com/NIRVANALAN/LN3Diff), [project page](https://nirvanalan.github.io/projects/ln3diff/)] is a scalable 3D latent diffusion model that supports speedy 3D assets generation. 
            It first trains a 3D VAE on **Objaverse**, which compress each 3D asset into a compact 3D-aware latent. After that, a image/text-conditioned diffusion model is trained following LDM paradigm.
            The model used in the demo adopts DiT-L/2 architecture and flow-matching framework, and supports single-image condition.
            It is trained on 8 A100 GPUs for 1M iterations with batch size 256.
            Locally, on an NVIDIA A100/A10 GPU, each image-conditioned diffusion generation can be done in 10~20 seconds (time varies due to the adaptive-step ODE solver used in flow-mathcing.)
            Upload an image of an object or click on one of the provided examples to see how the LN3Diff works.
            The 3D viewer will render a .obj object exported from the triplane, where the mesh resolution and iso-surface can be set manually.
            For best results run the demo locally and render locally - to do so, clone the [main repository](https://github.com/NIRVANALAN/LN3Diff).
            """
            )
        with gr.Row(variant="panel"):
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(
                        label="Input Image",
                        image_mode="RGBA",
                        sources="upload",
                        type="pil",
                        elem_id="content_image",
                    )
                    processed_image = gr.Image(label="Processed Image", interactive=False)

                # params
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            # with gr.Group():

                            unconditional_guidance_scale = gr.Number(
                                label="CFG-scale", value=4.0, interactive=True,
                            )
                            seed = gr.Number(
                                label="Seed", value=42, interactive=True,
                            )

                            num_steps = gr.Number(
                                label="ODE Sampling Steps", value=250, interactive=True,
                            )

                        # with gr.Column():
                        with gr.Row():
                                mesh_size = gr.Number(
                                    label="Mesh Resolution", value=192, interactive=True,
                            )

                                mesh_thres = gr.Number(
                                    label="Mesh Iso-surface", value=10, interactive=True,
                                )

                with gr.Row():
                    with gr.Group():
                        preprocess_background = gr.Checkbox(
                            label="Remove Background", value=True
                        )
                with gr.Row():
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")

                with gr.Row(variant="panel"): 
                    gr.Examples(
                        examples=[
                            str(path) for path in sorted(Path('./assets/i23d_examples').glob('**/*.png'))
                        ],
                        inputs=[input_image],
                        cache_examples=False,
                        label="Examples",
                        examples_per_page=20,
                    )

            with gr.Column():
                with gr.Row():
                    with gr.Tab("Reconstruction"):
                        with gr.Column():
                            output_video = gr.Video(value=None, width=384, label="Rendered Video", autoplay=True, loop=True)
                            output_model = gr.Model3D(
                                height=384,
                                clear_color=(1,1,1,1),
                                label="Output Model",
                                interactive=False
                            )

        gr.Markdown(
            """
            ## Comments:
            1. The sampling time varies since ODE-based sampling method (dopri5 by default) has adaptive internal step, and reducing sampling steps may not reduce the overal sampling time. Sampling steps=250 is the emperical value that works well in most cases.
            2. The 3D viewer shows a colored .glb mesh extracted from volumetric tri-plane, and may differ slightly with the volume rendering result.
            3. If you find your result unsatisfying, tune the CFG scale and change the random seed. Usually slightly increase the CFG value can lead to better performance.
            3. Known limitations include:
            - Texture details missing: since our VAE is trained on 192x192 resolution due the the resource constraints, the texture details generated by the final 3D-LDM may be blurry. We will keep improving the performance in the future.
            4. Regarding reconstruction performance, our model is slightly inferior to state-of-the-art multi-view LRM-based method (e.g. InstantMesh), but offers much better diversity, flexibility and editing potential due to the intrinsic nature of diffusion model.

            ## How does it work?

            LN3Diff is a feedforward 3D Latent Diffusion Model that supports direct 3D asset generation via diffusion sampling. 
            Compared to SDS-based ([DreamFusion](https://dreamfusion3d.github.io/)), mulit-view generation-based ([MVDream](https://arxiv.org/abs/2308.16512), [Zero123++](https://github.com/SUDO-AI-3D/zero123plus), [Instant3D](https://instant-3d.github.io/)) and feedforward 3D reconstruction-based ([LRM](https://yiconghong.me/LRM/), [InstantMesh](https://github.com/TencentARC/InstantMesh), [LGM](https://github.com/3DTopia/LGM)), 
            LN3Diff supports feedforward 3D generation with a unified framework.
            Like 2D/Video AIGC pipeline, LN3Diff first trains a 3D-VAE and then conduct LDM training (text/image conditioned) on the learned latent space. Some related methods from the industry ([Shape-E](https://github.com/openai/shap-e), [CLAY](https://github.com/CLAY-3D/OpenCLAY), [Meta 3D Gen](https://arxiv.org/abs/2303.05371)) also follow the same paradigm.
            Though currently the performance of the origin 3D LDM's works are overall inferior to reconstruction-based methods, we believe the proposed method has much potential and scales better with more data and compute resources, and may yield better 3D editing performance due to its compatability with diffusion model.
            For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [ECCV article](https://arxiv.org/pdf/2403.12019).
            """
        )

        submit.click(fn=check_input_image, inputs=[input_image]).success(
            fn=preprocess,
            inputs=[input_image, preprocess_background],
            outputs=[processed_image],
        ).success(
            # fn=reconstruct_and_export,
            # inputs=[processed_image],
            # outputs=[output_model, output_video],
            fn=reconstruct_and_export,
            inputs=[processed_image, num_steps, seed, mesh_size, mesh_thres, unconditional_guidance_scale],
            outputs=[output_video, output_model],
        )

    demo.queue(max_size=1)
    demo.launch(share=True)

# training_loop_class.eval_i23d_and_export(
#         # prompt=args.prompt,
#         # prompt=prompt,
#         unconditional_guidance_scale=args.
#         unconditional_guidance_scale,
#         # unconditional_guidance_scale=unconditional_guidance_scale,
#         # use_ddim=args.use_ddim,
#         # save_img=args.save_img,
#         # use_train_trajectory=args.use_train_trajectory,
#         camera=camera,
#         num_instances=args.num_instances,
#         num_samples=args.num_samples,
#         export_mesh=True, 
#         idx_to_render=seeds,
#     )




def create_argparser():
    defaults = dict(
        image_size_encoder=224,
        triplane_scaling_divider=1.0,  # divide by this value
        diffusion_input_size=-1,
        trainer_name='adm',
        use_amp=False,
        # triplane_scaling_divider=1.0, # divide by this value

        # * sampling flags
        clip_denoised=False,
        num_samples=10,
        num_instances=10, # for i23d, loop different condition
        use_ddim=False,
        ddpm_model_path="",
        cldm_model_path="",
        rec_model_path="",

        # * eval logging flags
        logdir="/mnt/lustre/yslan/logs/nips23/",
        data_dir="",
        eval_data_dir="",
        eval_batch_size=1,
        num_workers=1,

        # * training flags for loading TrainingLoop class
        overfitting=False,
        image_size=128,
        iterations=150000,
        schedule_sampler="uniform",
        anneal_lr=False,
        lr=5e-5,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=1,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=50,
        eval_interval=2500,
        save_interval=10000,
        resume_checkpoint="",
        resume_cldm_checkpoint="",
        resume_checkpoint_EG3D="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
        load_submodule_name='',  # for loading pretrained auto_encoder model
        ignore_resume_opt=False,
        freeze_ae=False,
        denoised_ae=True,
        # inference prompt
        prompt="a red chair",
        interval=1,
        save_img=False,
        use_train_trajectory=
        False,  # use train trajectory to sample images for fid calculation
        unconditional_guidance_scale=1.0,
        use_eos_feature=False,
        export_mesh=False,
        cond_key='caption',
        allow_tf32=True,
    )

    defaults.update(model_and_diffusion_defaults())
    defaults.update(encoder_and_nsr_defaults())  # type: ignore
    defaults.update(loss_defaults())
    defaults.update(continuous_diffusion_defaults())
    defaults.update(control_net_defaults())
    defaults.update(dataset_defaults())

    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)

    parse_transport_args(parser)

    return parser


if __name__ == "__main__":

    # os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
    # os.environ["NCCL_DEBUG"] = "INFO"

    os.environ[
        "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"  # set to DETAIL for runtime logging.

    args = create_argparser().parse_args()

    args.local_rank = int(os.environ["LOCAL_RANK"])
    args.gpus = th.cuda.device_count()

    args.rendering_kwargs = rendering_options_defaults(args)


    # main(args)

    zero = torch.Tensor([0]).cuda()
    print(zero.device) # <-- 'cpu' πŸ€”

    @spaces.GPU
    def greet(n):
        print(zero.device) # <-- 'cuda:0' πŸ€—
        return f"Hello {zero + n} Tensor"

    demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())