Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,747 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
from typing import Callable, Iterable, Union
import torch
from einops import rearrange, repeat
from sgm.modules.diffusionmodules.model import (XFORMERS_IS_AVAILABLE,
AttnBlock, Decoder,
MemoryEfficientAttnBlock,
ResnetBlock)
from sgm.modules.diffusionmodules.openaimodel import (ResBlock,
timestep_embedding)
from sgm.modules.video_attention import VideoTransformerBlock
from sgm.util import partialclass
class VideoResBlock(ResnetBlock):
def __init__(
self,
out_channels,
*args,
dropout=0.0,
video_kernel_size=3,
alpha=0.0,
merge_strategy="learned",
**kwargs,
):
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
if video_kernel_size is None:
video_kernel_size = [3, 1, 1]
self.time_stack = ResBlock(
channels=out_channels,
emb_channels=0,
dropout=dropout,
dims=3,
use_scale_shift_norm=False,
use_conv=False,
up=False,
down=False,
kernel_size=video_kernel_size,
use_checkpoint=False,
skip_t_emb=True,
)
self.merge_strategy = merge_strategy
if self.merge_strategy == "fixed":
self.register_buffer("mix_factor", torch.Tensor([alpha]))
elif self.merge_strategy == "learned":
self.register_parameter(
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
)
else:
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
def get_alpha(self, bs):
if self.merge_strategy == "fixed":
return self.mix_factor
elif self.merge_strategy == "learned":
return torch.sigmoid(self.mix_factor)
else:
raise NotImplementedError()
def forward(self, x, temb, skip_video=False, timesteps=None):
if timesteps is None:
timesteps = self.timesteps
b, c, h, w = x.shape
x = super().forward(x, temb)
if not skip_video:
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
x = self.time_stack(x, temb)
alpha = self.get_alpha(bs=b // timesteps)
x = alpha * x + (1.0 - alpha) * x_mix
x = rearrange(x, "b c t h w -> (b t) c h w")
return x
class AE3DConv(torch.nn.Conv2d):
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
super().__init__(in_channels, out_channels, *args, **kwargs)
if isinstance(video_kernel_size, Iterable):
padding = [int(k // 2) for k in video_kernel_size]
else:
padding = int(video_kernel_size // 2)
self.time_mix_conv = torch.nn.Conv3d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=video_kernel_size,
padding=padding,
)
def forward(self, input, timesteps, skip_video=False):
x = super().forward(input)
if skip_video:
return x
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
x = self.time_mix_conv(x)
return rearrange(x, "b c t h w -> (b t) c h w")
class VideoBlock(AttnBlock):
def __init__(
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
):
super().__init__(in_channels)
# no context, single headed, as in base class
self.time_mix_block = VideoTransformerBlock(
dim=in_channels,
n_heads=1,
d_head=in_channels,
checkpoint=False,
ff_in=True,
attn_mode="softmax",
)
time_embed_dim = self.in_channels * 4
self.video_time_embed = torch.nn.Sequential(
torch.nn.Linear(self.in_channels, time_embed_dim),
torch.nn.SiLU(),
torch.nn.Linear(time_embed_dim, self.in_channels),
)
self.merge_strategy = merge_strategy
if self.merge_strategy == "fixed":
self.register_buffer("mix_factor", torch.Tensor([alpha]))
elif self.merge_strategy == "learned":
self.register_parameter(
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
)
else:
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
def forward(self, x, timesteps, skip_video=False):
if skip_video:
return super().forward(x)
x_in = x
x = self.attention(x)
h, w = x.shape[2:]
x = rearrange(x, "b c h w -> b (h w) c")
x_mix = x
num_frames = torch.arange(timesteps, device=x.device)
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
num_frames = rearrange(num_frames, "b t -> (b t)")
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
emb = self.video_time_embed(t_emb) # b, n_channels
emb = emb[:, None, :]
x_mix = x_mix + emb
alpha = self.get_alpha()
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
x = self.proj_out(x)
return x_in + x
def get_alpha(
self,
):
if self.merge_strategy == "fixed":
return self.mix_factor
elif self.merge_strategy == "learned":
return torch.sigmoid(self.mix_factor)
else:
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock):
def __init__(
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
):
super().__init__(in_channels)
# no context, single headed, as in base class
self.time_mix_block = VideoTransformerBlock(
dim=in_channels,
n_heads=1,
d_head=in_channels,
checkpoint=False,
ff_in=True,
attn_mode="softmax-xformers",
)
time_embed_dim = self.in_channels * 4
self.video_time_embed = torch.nn.Sequential(
torch.nn.Linear(self.in_channels, time_embed_dim),
torch.nn.SiLU(),
torch.nn.Linear(time_embed_dim, self.in_channels),
)
self.merge_strategy = merge_strategy
if self.merge_strategy == "fixed":
self.register_buffer("mix_factor", torch.Tensor([alpha]))
elif self.merge_strategy == "learned":
self.register_parameter(
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
)
else:
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
def forward(self, x, timesteps, skip_time_block=False):
if skip_time_block:
return super().forward(x)
x_in = x
x = self.attention(x)
h, w = x.shape[2:]
x = rearrange(x, "b c h w -> b (h w) c")
x_mix = x
num_frames = torch.arange(timesteps, device=x.device)
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
num_frames = rearrange(num_frames, "b t -> (b t)")
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
emb = self.video_time_embed(t_emb) # b, n_channels
emb = emb[:, None, :]
x_mix = x_mix + emb
alpha = self.get_alpha()
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
x = self.proj_out(x)
return x_in + x
def get_alpha(
self,
):
if self.merge_strategy == "fixed":
return self.mix_factor
elif self.merge_strategy == "learned":
return torch.sigmoid(self.mix_factor)
else:
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
def make_time_attn(
in_channels,
attn_type="vanilla",
attn_kwargs=None,
alpha: float = 0,
merge_strategy: str = "learned",
):
assert attn_type in [
"vanilla",
"vanilla-xformers",
], f"attn_type {attn_type} not supported for spatio-temporal attention"
print(
f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels"
)
if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers":
print(
f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. "
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
)
attn_type = "vanilla"
if attn_type == "vanilla":
assert attn_kwargs is None
return partialclass(
VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
)
elif attn_type == "vanilla-xformers":
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
return partialclass(
MemoryEfficientVideoBlock,
in_channels,
alpha=alpha,
merge_strategy=merge_strategy,
)
else:
return NotImplementedError()
class Conv2DWrapper(torch.nn.Conv2d):
def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
return super().forward(input)
class VideoDecoder(Decoder):
available_time_modes = ["all", "conv-only", "attn-only"]
def __init__(
self,
*args,
video_kernel_size: Union[int, list] = 3,
alpha: float = 0.0,
merge_strategy: str = "learned",
time_mode: str = "conv-only",
**kwargs,
):
self.video_kernel_size = video_kernel_size
self.alpha = alpha
self.merge_strategy = merge_strategy
self.time_mode = time_mode
assert (
self.time_mode in self.available_time_modes
), f"time_mode parameter has to be in {self.available_time_modes}"
super().__init__(*args, **kwargs)
def get_last_layer(self, skip_time_mix=False, **kwargs):
if self.time_mode == "attn-only":
raise NotImplementedError("TODO")
else:
return (
self.conv_out.time_mix_conv.weight
if not skip_time_mix
else self.conv_out.weight
)
def _make_attn(self) -> Callable:
if self.time_mode not in ["conv-only", "only-last-conv"]:
return partialclass(
make_time_attn,
alpha=self.alpha,
merge_strategy=self.merge_strategy,
)
else:
return super()._make_attn()
def _make_conv(self) -> Callable:
if self.time_mode != "attn-only":
return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
else:
return Conv2DWrapper
def _make_resblock(self) -> Callable:
if self.time_mode not in ["attn-only", "only-last-conv"]:
return partialclass(
VideoResBlock,
video_kernel_size=self.video_kernel_size,
alpha=self.alpha,
merge_strategy=self.merge_strategy,
)
else:
return super()._make_resblock()
|