Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,770 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...modules.autoencoding.lpips.loss.lpips import LPIPS
from ...modules.encoders.modules import GeneralConditioner
from ...util import append_dims, instantiate_from_config
from .denoiser import Denoiser
from transport import create_transport, Sampler
from pdb import set_trace as st
class FMLoss(nn.Module):
def __init__(self, transport_config):
super().__init__()
self.transport = instantiate_from_config(transport_config)
def _forward(
self,
network: nn.Module,
cond: Dict,
input: torch.Tensor,
batch: Dict,
) -> Tuple[torch.Tensor, Dict]:
# additional_model_inputs = {
# key: batch[key] for key in self.batch2model_keys.intersection(batch)
# }
model_kwargs = dict(context=cond)
loss_dict = self.transport.training_losses(network, input, model_kwargs)
# st() # check transport and model_kwargs whether OK
loss = loss_dict["loss"].mean()
return loss, loss_dict
def forward(
self,
network: nn.Module,
# denoiser: Denoiser,
conditioner: GeneralConditioner,
input: torch.Tensor,
batch: Dict,
) -> torch.Tensor:
cond = conditioner(batch)
return self._forward(network, cond, input, batch)
class StandardDiffusionLoss(nn.Module):
def __init__(
self,
sigma_sampler_config: dict,
loss_weighting_config: dict,
loss_type: str = "l2",
offset_noise_level: float = 0.0,
batch2model_keys: Optional[Union[str, List[str]]] = None,
):
super().__init__()
assert loss_type in ["l2", "l1", "lpips"]
self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
self.loss_weighting = instantiate_from_config(loss_weighting_config)
self.loss_type = loss_type
self.offset_noise_level = offset_noise_level
if loss_type == "lpips":
self.lpips = LPIPS().eval()
if not batch2model_keys:
batch2model_keys = []
if isinstance(batch2model_keys, str):
batch2model_keys = [batch2model_keys]
self.batch2model_keys = set(batch2model_keys)
def get_noised_input(
self, sigmas_bc: torch.Tensor, noise: torch.Tensor, input: torch.Tensor
) -> torch.Tensor:
noised_input = input + noise * sigmas_bc
return noised_input
def forward(
self,
network: nn.Module,
denoiser: Denoiser,
conditioner: GeneralConditioner,
input: torch.Tensor,
batch: Dict,
) -> torch.Tensor:
cond = conditioner(batch)
return self._forward(network, denoiser, cond, input, batch)
def _forward(
self,
network: nn.Module,
denoiser: Denoiser,
cond: Dict,
input: torch.Tensor,
batch: Dict,
) -> Tuple[torch.Tensor, Dict]:
additional_model_inputs = {
key: batch[key] for key in self.batch2model_keys.intersection(batch)
}
sigmas = self.sigma_sampler(input.shape[0]).to(input)
noise = torch.randn_like(input)
if self.offset_noise_level > 0.0:
offset_shape = (
(input.shape[0], 1, input.shape[2])
if self.n_frames is not None
else (input.shape[0], input.shape[1])
)
noise = noise + self.offset_noise_level * append_dims(
torch.randn(offset_shape, device=input.device),
input.ndim,
)
sigmas_bc = append_dims(sigmas, input.ndim)
noised_input = self.get_noised_input(sigmas_bc, noise, input)
model_output = denoiser(
network, noised_input, sigmas, cond, **additional_model_inputs
)
w = append_dims(self.loss_weighting(sigmas), input.ndim)
return self.get_loss(model_output, input, w), {
'noised_input': noised_input,
'sigmas': sigmas,
'noise': noise,
'model_output': model_output, # x_start
}
def get_loss(self, model_output, target, w):
if self.loss_type == "l2":
return torch.mean(
(w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
)
elif self.loss_type == "l1":
return torch.mean(
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
)
elif self.loss_type == "lpips":
loss = self.lpips(model_output, target).reshape(-1)
return loss
else:
raise NotImplementedError(f"Unknown loss type {self.loss_type}")
|