File size: 4,770 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from ...modules.autoencoding.lpips.loss.lpips import LPIPS
from ...modules.encoders.modules import GeneralConditioner
from ...util import append_dims, instantiate_from_config
from .denoiser import Denoiser

from transport import create_transport, Sampler
from pdb import set_trace as st

class FMLoss(nn.Module):
    def __init__(self, transport_config):
        super().__init__()
        self.transport = instantiate_from_config(transport_config)

    def _forward(
        self,
        network: nn.Module,
        cond: Dict,
        input: torch.Tensor,
        batch: Dict,
    ) -> Tuple[torch.Tensor, Dict]:
        # additional_model_inputs = {
        #     key: batch[key] for key in self.batch2model_keys.intersection(batch)
        # }
        model_kwargs = dict(context=cond)

        loss_dict = self.transport.training_losses(network, input, model_kwargs)
        # st() # check transport and model_kwargs whether OK
        loss = loss_dict["loss"].mean()
        return loss, loss_dict

    
    def forward(
        self,
        network: nn.Module,
        # denoiser: Denoiser,
        conditioner: GeneralConditioner,
        input: torch.Tensor,
        batch: Dict,
    ) -> torch.Tensor:
        cond = conditioner(batch)
        return self._forward(network, cond, input, batch)


class StandardDiffusionLoss(nn.Module):
    def __init__(
        self,
        sigma_sampler_config: dict,
        loss_weighting_config: dict,
        loss_type: str = "l2",
        offset_noise_level: float = 0.0,
        batch2model_keys: Optional[Union[str, List[str]]] = None,
    ):
        super().__init__()

        assert loss_type in ["l2", "l1", "lpips"]

        self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
        self.loss_weighting = instantiate_from_config(loss_weighting_config)

        self.loss_type = loss_type
        self.offset_noise_level = offset_noise_level

        if loss_type == "lpips":
            self.lpips = LPIPS().eval()

        if not batch2model_keys:
            batch2model_keys = []

        if isinstance(batch2model_keys, str):
            batch2model_keys = [batch2model_keys]

        self.batch2model_keys = set(batch2model_keys)

    def get_noised_input(
        self, sigmas_bc: torch.Tensor, noise: torch.Tensor, input: torch.Tensor
    ) -> torch.Tensor:
        noised_input = input + noise * sigmas_bc
        return noised_input

    def forward(
        self,
        network: nn.Module,
        denoiser: Denoiser,
        conditioner: GeneralConditioner,
        input: torch.Tensor,
        batch: Dict,
    ) -> torch.Tensor:
        cond = conditioner(batch)
        return self._forward(network, denoiser, cond, input, batch)

    def _forward(
        self,
        network: nn.Module,
        denoiser: Denoiser,
        cond: Dict,
        input: torch.Tensor,
        batch: Dict,
    ) -> Tuple[torch.Tensor, Dict]:
        additional_model_inputs = {
            key: batch[key] for key in self.batch2model_keys.intersection(batch)
        }
        sigmas = self.sigma_sampler(input.shape[0]).to(input)

        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            offset_shape = (
                (input.shape[0], 1, input.shape[2])
                if self.n_frames is not None
                else (input.shape[0], input.shape[1])
            )
            noise = noise + self.offset_noise_level * append_dims(
                torch.randn(offset_shape, device=input.device),
                input.ndim,
            )
        sigmas_bc = append_dims(sigmas, input.ndim)
        noised_input = self.get_noised_input(sigmas_bc, noise, input)

        model_output = denoiser(
            network, noised_input, sigmas, cond, **additional_model_inputs
        )
        w = append_dims(self.loss_weighting(sigmas), input.ndim)
        return self.get_loss(model_output, input, w), {
            'noised_input': noised_input,
            'sigmas': sigmas,
            'noise': noise,
            'model_output': model_output, # x_start
        }

    def get_loss(self, model_output, target, w):
        if self.loss_type == "l2":
            return torch.mean(
                (w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
            )
        elif self.loss_type == "l1":
            return torch.mean(
                (w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
            )
        elif self.loss_type == "lpips":
            loss = self.lpips(model_output, target).reshape(-1)
            return loss
        else:
            raise NotImplementedError(f"Unknown loss type {self.loss_type}")