Spaces:
Running
on
Zero
Running
on
Zero
# ------------------------------------------------------------------------------ | |
# https://github.dev/HRNet/HigherHRNet-Human-Pose-Estimation | |
# Copyright (c) Microsoft | |
# Licensed under the MIT License. | |
# Written by Bin Xiao ([email protected]) | |
# Modified by Bowen Cheng ([email protected]) | |
# ------------------------------------------------------------------------------ | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import logging | |
import torch | |
import torch.nn as nn | |
from pdb import set_trace as st | |
logger = logging.getLogger(__name__) | |
class HeatmapGenerator(): | |
def __init__(self, heatmap_size, num_joints=68, sigma=2): | |
self.heatmap_size = heatmap_size | |
# self.image_size = image_size | |
self.num_joints = num_joints | |
if sigma < 0: | |
sigma = self.heatmap_size / 64 | |
self.sigma = sigma | |
size = 6 * sigma + 3 | |
x = np.arange(0, size, 1, float) | |
y = x[:, np.newaxis] | |
x0, y0 = 3 * sigma + 1, 3 * sigma + 1 | |
self.g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) | |
# def __call__(self, joints, image_size: np.ndarray): | |
def __call__(self, joints, image_size: int): | |
"""generate heatmap gt from joints | |
Args: | |
joints (np.ndarray): N,3 | |
Returns: | |
hms: N,H,W | |
""" | |
hms = np.zeros((self.num_joints, self.heatmap_size, self.heatmap_size), | |
dtype=np.float32) | |
sigma = self.sigma | |
# feat_stride = image_size / [self.heatmap_size, self.heatmap_size] | |
feat_stride = image_size / self.heatmap_size | |
for idx, pt in enumerate(joints): | |
# for idx, pt in enumerate(p): | |
if pt[2] > 0: | |
# x = int(pt[0] / feat_stride[0] + 0.5) | |
# y = int(pt[1] / feat_stride[1] + 0.5) # normalize joints to heatmap size | |
x = int(pt[0] / feat_stride + 0.5) | |
y = int(pt[1] / feat_stride + | |
0.5) # normalize joints to heatmap size | |
if x < 0 or y < 0 or \ | |
x >= self.heatmap_size or y >= self.heatmap_size: | |
continue | |
ul = int(np.round(x - 3 * sigma - 1)), int( | |
np.round(y - 3 * sigma - 1)) | |
br = int(np.round(x + 3 * sigma + 2)), int( | |
np.round(y + 3 * sigma + 2)) | |
c, d = max(0, -ul[0]), min(br[0], self.heatmap_size) - ul[0] | |
a, b = max(0, -ul[1]), min(br[1], self.heatmap_size) - ul[1] | |
cc, dd = max(0, ul[0]), min(br[0], self.heatmap_size) | |
aa, bb = max(0, ul[1]), min(br[1], self.heatmap_size) | |
hms[idx, aa:bb, cc:dd] = np.maximum(hms[idx, aa:bb, cc:dd], | |
self.g[a:b, c:d]) | |
return hms | |
class HeatmapLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, pred, gt, mask=None): | |
# todo, add mask | |
assert pred.size() == gt.size() | |
loss = ((pred - gt)**2) | |
if mask is not None: | |
loss = loss * mask[:, None, :, :].expand_as(pred) | |
# loss = loss.mean(dim=3).mean(dim=2).mean(dim=1) | |
loss = loss.mean() | |
# loss = loss.mean(dim=3).mean(dim=2).sum(dim=1) | |
return loss | |