LN3Diff_I23D / utils /torch_utils /ops /conv2d_gradfix.py
NIRVANALAN
init
11e6f7b
raw
history blame
12.3 kB
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Custom replacement for `torch.nn.functional.conv2d` that supports
arbitrarily high order gradients with zero performance penalty."""
import contextlib
import torch
from pdb import set_trace as st
import traceback
# pylint: disable=redefined-builtin
# pylint: disable=arguments-differ
# pylint: disable=protected-access
#----------------------------------------------------------------------------
enabled = False # Enable the custom op by setting this to true.
weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
@contextlib.contextmanager
def no_weight_gradients(disable=True):
global weight_gradients_disabled
old = weight_gradients_disabled
if disable:
weight_gradients_disabled = True
yield
weight_gradients_disabled = old
#----------------------------------------------------------------------------
def conv2d(input,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1):
if _should_use_custom_op(input):
return _conv2d_gradfix(transpose=False,
weight_shape=weight.shape,
stride=stride,
padding=padding,
output_padding=0,
dilation=dilation,
groups=groups).apply(input, weight, bias)
return torch.nn.functional.conv2d(input=input,
weight=weight,
bias=bias,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups)
def conv_transpose2d(input,
weight,
bias=None,
stride=1,
padding=0,
output_padding=0,
groups=1,
dilation=1):
if _should_use_custom_op(input):
return _conv2d_gradfix(transpose=True,
weight_shape=weight.shape,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation).apply(input, weight, bias)
return torch.nn.functional.conv_transpose2d(input=input,
weight=weight,
bias=bias,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation)
#----------------------------------------------------------------------------
def _should_use_custom_op(input):
assert isinstance(input, torch.Tensor)
if (not enabled) or (not torch.backends.cudnn.enabled):
return False
if input.device.type != 'cuda':
return False
return True
def _tuple_of_ints(xs, ndim):
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs, ) * ndim
assert len(xs) == ndim
assert all(isinstance(x, int) for x in xs)
return xs
#----------------------------------------------------------------------------
_conv2d_gradfix_cache = dict()
_null_tensor = torch.empty([0])
def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding,
dilation, groups):
# Parse arguments.
ndim = 2
weight_shape = tuple(weight_shape)
stride = _tuple_of_ints(stride, ndim)
padding = _tuple_of_ints(padding, ndim)
output_padding = _tuple_of_ints(output_padding, ndim)
dilation = _tuple_of_ints(dilation, ndim)
# Lookup from cache.
key = (transpose, weight_shape, stride, padding, output_padding, dilation,
groups)
if key in _conv2d_gradfix_cache:
return _conv2d_gradfix_cache[key]
# Validate arguments.
assert groups >= 1
assert len(weight_shape) == ndim + 2
assert all(stride[i] >= 1 for i in range(ndim))
assert all(padding[i] >= 0 for i in range(ndim))
assert all(dilation[i] >= 0 for i in range(ndim))
if not transpose:
assert all(output_padding[i] == 0 for i in range(ndim))
else: # transpose
assert all(0 <= output_padding[i] < max(stride[i], dilation[i])
for i in range(ndim))
# Helpers.
common_kwargs = dict(stride=stride,
padding=padding,
dilation=dilation,
groups=groups)
def calc_output_padding(input_shape, output_shape):
if transpose:
return [0, 0]
return [
input_shape[i + 2] - (output_shape[i + 2] - 1) * stride[i] -
(1 - 2 * padding[i]) - dilation[i] * (weight_shape[i + 2] - 1)
for i in range(ndim)
]
# Forward & backward.
class Conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias):
assert weight.shape == weight_shape
ctx.save_for_backward(
input if weight.requires_grad else _null_tensor,
weight if input.requires_grad else _null_tensor,
)
ctx.input_shape = input.shape
# Simple 1x1 convolution => cuBLAS (only on Volta, not on Ampere).
if weight_shape[2:] == stride == dilation == (
1, 1) and padding == (
0, 0) and torch.cuda.get_device_capability(
input.device) < (8, 0):
a = weight.reshape(groups, weight_shape[0] // groups,
weight_shape[1])
b = input.reshape(input.shape[0], groups,
input.shape[1] // groups, -1)
c = (a.transpose(1, 2) if transpose else a) @ b.permute(
1, 2, 0, 3).flatten(2)
c = c.reshape(-1, input.shape[0],
*input.shape[2:]).transpose(0, 1)
c = c if bias is None else c + bias.unsqueeze(0).unsqueeze(
2).unsqueeze(3)
return c.contiguous(
memory_format=(torch.channels_last if input.stride(1) ==
1 else torch.contiguous_format))
# General case => cuDNN.
if transpose:
return torch.nn.functional.conv_transpose2d(
input=input,
weight=weight,
bias=bias,
output_padding=output_padding,
**common_kwargs)
return torch.nn.functional.conv2d(input=input,
weight=weight,
bias=bias,
**common_kwargs)
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
input_shape = ctx.input_shape
grad_input = None
grad_weight = None
grad_bias = None
if ctx.needs_input_grad[0]:
p = calc_output_padding(input_shape=input_shape,
output_shape=grad_output.shape)
op = _conv2d_gradfix(transpose=(not transpose),
weight_shape=weight_shape,
output_padding=p,
**common_kwargs)
grad_input = op.apply(grad_output, weight, None)
assert grad_input.shape == input_shape
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
grad_weight = Conv2dGradWeight.apply(grad_output, input,
weight)
assert grad_weight.shape == weight_shape
if ctx.needs_input_grad[2]:
grad_bias = grad_output.sum([0, 2, 3])
return grad_input, grad_weight, grad_bias
# Gradient with respect to the weights.
class Conv2dGradWeight(torch.autograd.Function):
@staticmethod
def forward(ctx, grad_output, input, weight):
ctx.save_for_backward(
grad_output if input.requires_grad else _null_tensor,
input if grad_output.requires_grad else _null_tensor,
)
ctx.grad_output_shape = grad_output.shape
ctx.input_shape = input.shape
# Simple 1x1 convolution => cuBLAS (on both Volta and Ampere).
if weight_shape[2:] == stride == dilation == (
1, 1) and padding == (0, 0):
a = grad_output.reshape(grad_output.shape[0], groups,
grad_output.shape[1] // groups,
-1).permute(1, 2, 0, 3).flatten(2)
b = input.reshape(input.shape[0], groups,
input.shape[1] // groups,
-1).permute(1, 2, 0, 3).flatten(2)
c = (b @ a.transpose(1, 2) if transpose else
a @ b.transpose(1, 2)).reshape(weight_shape)
return c.contiguous(
memory_format=(torch.channels_last if input.stride(1) ==
1 else torch.contiguous_format))
# General case => cuDNN.
# print(input.device, weight.device, flush=True)
# for line in traceback.format_stack():
# print(line.strip(), flush=True)
return torch.ops.aten.convolution_backward(
grad_output=grad_output,
input=input,
weight=weight,
bias_sizes=None,
stride=stride,
padding=padding,
dilation=dilation,
transposed=transpose,
output_padding=output_padding,
groups=groups,
output_mask=[False, True, False])[1]
@staticmethod
def backward(ctx, grad2_grad_weight):
grad_output, input = ctx.saved_tensors
grad_output_shape = ctx.grad_output_shape
input_shape = ctx.input_shape
grad2_grad_output = None
grad2_input = None
if ctx.needs_input_grad[0]:
grad2_grad_output = Conv2d.apply(input, grad2_grad_weight,
None)
assert grad2_grad_output.shape == grad_output_shape
if ctx.needs_input_grad[1]:
p = calc_output_padding(input_shape=input_shape,
output_shape=grad_output_shape)
op = _conv2d_gradfix(transpose=(not transpose),
weight_shape=weight_shape,
output_padding=p,
**common_kwargs)
grad2_input = op.apply(grad_output, grad2_grad_weight, None)
assert grad2_input.shape == input_shape
return grad2_grad_output, grad2_input
_conv2d_gradfix_cache[key] = Conv2d
return Conv2d
#----------------------------------------------------------------------------