from typing import Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from ...modules.autoencoding.lpips.loss.lpips import LPIPS from ...modules.encoders.modules import GeneralConditioner from ...util import append_dims, instantiate_from_config from .denoiser import Denoiser from transport import create_transport, Sampler from pdb import set_trace as st class FMLoss(nn.Module): def __init__(self, transport_config): super().__init__() self.transport = instantiate_from_config(transport_config) def _forward( self, network: nn.Module, cond: Dict, input: torch.Tensor, batch: Dict, ) -> Tuple[torch.Tensor, Dict]: # additional_model_inputs = { # key: batch[key] for key in self.batch2model_keys.intersection(batch) # } model_kwargs = dict(context=cond) loss_dict = self.transport.training_losses(network, input, model_kwargs) # st() # check transport and model_kwargs whether OK loss = loss_dict["loss"].mean() return loss, loss_dict def forward( self, network: nn.Module, # denoiser: Denoiser, conditioner: GeneralConditioner, input: torch.Tensor, batch: Dict, ) -> torch.Tensor: cond = conditioner(batch) return self._forward(network, cond, input, batch) class StandardDiffusionLoss(nn.Module): def __init__( self, sigma_sampler_config: dict, loss_weighting_config: dict, loss_type: str = "l2", offset_noise_level: float = 0.0, batch2model_keys: Optional[Union[str, List[str]]] = None, ): super().__init__() assert loss_type in ["l2", "l1", "lpips"] self.sigma_sampler = instantiate_from_config(sigma_sampler_config) self.loss_weighting = instantiate_from_config(loss_weighting_config) self.loss_type = loss_type self.offset_noise_level = offset_noise_level if loss_type == "lpips": self.lpips = LPIPS().eval() if not batch2model_keys: batch2model_keys = [] if isinstance(batch2model_keys, str): batch2model_keys = [batch2model_keys] self.batch2model_keys = set(batch2model_keys) def get_noised_input( self, sigmas_bc: torch.Tensor, noise: torch.Tensor, input: torch.Tensor ) -> torch.Tensor: noised_input = input + noise * sigmas_bc return noised_input def forward( self, network: nn.Module, denoiser: Denoiser, conditioner: GeneralConditioner, input: torch.Tensor, batch: Dict, ) -> torch.Tensor: cond = conditioner(batch) return self._forward(network, denoiser, cond, input, batch) def _forward( self, network: nn.Module, denoiser: Denoiser, cond: Dict, input: torch.Tensor, batch: Dict, ) -> Tuple[torch.Tensor, Dict]: additional_model_inputs = { key: batch[key] for key in self.batch2model_keys.intersection(batch) } sigmas = self.sigma_sampler(input.shape[0]).to(input) noise = torch.randn_like(input) if self.offset_noise_level > 0.0: offset_shape = ( (input.shape[0], 1, input.shape[2]) if self.n_frames is not None else (input.shape[0], input.shape[1]) ) noise = noise + self.offset_noise_level * append_dims( torch.randn(offset_shape, device=input.device), input.ndim, ) sigmas_bc = append_dims(sigmas, input.ndim) noised_input = self.get_noised_input(sigmas_bc, noise, input) model_output = denoiser( network, noised_input, sigmas, cond, **additional_model_inputs ) w = append_dims(self.loss_weighting(sigmas), input.ndim) return self.get_loss(model_output, input, w), { 'noised_input': noised_input, 'sigmas': sigmas, 'noise': noise, 'model_output': model_output, # x_start } def get_loss(self, model_output, target, w): if self.loss_type == "l2": return torch.mean( (w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1 ) elif self.loss_type == "l1": return torch.mean( (w * (model_output - target).abs()).reshape(target.shape[0], -1), 1 ) elif self.loss_type == "lpips": loss = self.lpips(model_output, target).reshape(-1) return loss else: raise NotImplementedError(f"Unknown loss type {self.loss_type}")