""" Train a diffusion model on images. """ # import imageio import gzip import random import json import sys import os import lmdb from tqdm import tqdm sys.path.append('.') import torch.distributed as dist import pickle import traceback from PIL import Image import torch as th import torch.multiprocessing as mp import lzma import numpy as np from torch.utils.data import DataLoader, Dataset import imageio.v3 as iio import argparse import dnnlib from guided_diffusion import dist_util, logger from guided_diffusion.script_util import ( args_to_dict, add_dict_to_argparser, ) # from nsr.train_util import TrainLoop3DRec as TrainLoop from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default # from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data from nsr.losses.builder import E3DGELossClass from datasets.eg3d_dataset import init_dataset_kwargs from pdb import set_trace as st import bz2 # th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 def training_loop(args): # def training_loop(args): dist_util.setup_dist(args) # th.autograd.set_detect_anomaly(True) # type: ignore th.autograd.set_detect_anomaly(False) # type: ignore # https://blog.csdn.net/qq_41682740/article/details/126304613 SEED = args.seed # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) logger.log(f"{args.local_rank=} init complete, seed={SEED}") th.cuda.set_device(args.local_rank) th.cuda.empty_cache() # * deterministic algorithms flags th.cuda.manual_seed_all(SEED) np.random.seed(SEED) random.seed(SEED) # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) logger.configure(dir=args.logdir) logger.log("creating encoder and NSR decoder...") # device = dist_util.dev() device = th.device("cuda", args.local_rank) # shared eg3d opts opts = eg3d_options_default() if args.sr_training: args.sr_kwargs = dnnlib.EasyDict( channel_base=opts.cbase, channel_max=opts.cmax, fused_modconv_default='inference_only', use_noise=True ) # ! close noise injection? since noise_mode='none' in eg3d # auto_encoder = create_3DAE_model( # **args_to_dict(args, # encoder_and_nsr_defaults().keys())) # auto_encoder.to(device) # auto_encoder.train() if args.objv_dataset: from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_data_for_lmdb else: # shapenet from datasets.shapenet import load_data, load_eval_data, load_memory_data, load_data_for_lmdb logger.log("creating data loader...") # data = load_data( # st() # if args.overfitting: # data = load_memory_data( # file_path=args.data_dir, # batch_size=args.batch_size, # reso=args.image_size, # reso_encoder=args.image_size_encoder, # 224 -> 128 # num_workers=args.num_workers, # # load_depth=args.depth_lambda > 0 # load_depth=True # for evaluation # ) # else: if args.cfg in ('afhq', 'ffhq'): # ! load data logger.log("creating eg3d data loader...") training_set_kwargs, dataset_name = init_dataset_kwargs(data=args.data_dir, class_name='datasets.eg3d_dataset.ImageFolderDatasetLMDB', reso_gt=args.image_size) # only load pose here # if args.cond and not training_set_kwargs.use_labels: # raise Exception('check here') # training_set_kwargs.use_labels = args.cond training_set_kwargs.use_labels = True training_set_kwargs.xflip = False training_set_kwargs.random_seed = SEED # training_set_kwargs.max_size = args.dataset_size # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' # * construct ffhq/afhq dataset training_set = dnnlib.util.construct_class_by_name( **training_set_kwargs) # subclass of training.dataset.Dataset dataset_size = len(training_set) # training_set_sampler = InfiniteSampler( # dataset=training_set, # rank=dist_util.get_rank(), # num_replicas=dist_util.get_world_size(), # seed=SEED) data = DataLoader( training_set, shuffle=False, batch_size=1, num_workers=16, drop_last=False, # prefetch_factor=2, pin_memory=True, persistent_workers=True, ) else: # data, dataset_name, dataset_size = load_data_for_lmdb( data, dataset_name, dataset_size, _ = load_data_for_lmdb( file_path=args.data_dir, batch_size=args.batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=args.num_workers, load_depth=True, preprocess=None, dataset_size=args.dataset_size, trainer_name=args.trainer_name # load_depth=True # for evaluation ) # if args.pose_warm_up_iter > 0: # overfitting_dataset = load_memory_data( # file_path=args.data_dir, # batch_size=args.batch_size, # reso=args.image_size, # reso_encoder=args.image_size_encoder, # 224 -> 128 # num_workers=args.num_workers, # # load_depth=args.depth_lambda > 0 # load_depth=True # for evaluation # ) # data = [data, overfitting_dataset, args.pose_warm_up_iter] # eval_data = load_eval_data( # file_path=args.eval_data_dir, # batch_size=args.eval_batch_size, # reso=args.image_size, # reso_encoder=args.image_size_encoder, # 224 -> 128 # num_workers=args.num_workers, # load_depth=True, # for evaluation # preprocess=auto_encoder.preprocess) args.img_size = [args.image_size_encoder] # try dry run # batch = next(data) # batch = None # logger.log("creating model and diffusion...") # let all processes sync up before starting with a new epoch of training dist_util.synchronize() # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) # opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start # loss_class = E3DGELossClass(device, opt).to(device) # writer = SummaryWriter() # TODO, add log dir logger.log("training...") # TrainLoop = { # 'input_rec': TrainLoop3DRec, # 'nv_rec': TrainLoop3DRecNV, # 'nv_rec_patch': TrainLoop3DRecNVPatch, # }[args.trainer_name] # TrainLoop(rec_model=auto_encoder, # loss_class=loss_class, # data=data, # eval_data=eval_data, # **vars(args)).run_loop() # ! overfitting def convert_to_lmdb(dataset_loader, lmdb_path): """ Convert a PyTorch dataset to LMDB format. Parameters: - dataset: PyTorch dataset - lmdb_path: Path to store the LMDB database """ env = lmdb.open(lmdb_path, map_size=1024 ** 4, readahead=False) # Adjust map_size based on your dataset size with env.begin(write=True) as txn: for idx, sample in enumerate(tqdm(dataset_loader)): # remove the batch index of returned dict sample sample = { k:v.squeeze(0).cpu().numpy() if isinstance(v, th.Tensor) else v[0] for k, v in sample.items() } # sample = dataset_loader[idx] key = str(idx).encode('utf-8') value = pickle.dumps(sample) txn.put(key, value) # txn.put("length".encode("utf-8"), f'{imgset_size}'.encode("utf-8")) # ! will incur bug in dataloading. # txn.put("start_idx".encode("utf-8"), f'{start_idx}'.encode("utf-8")) # txn.put("end_idx".encode("utf-8"), f'{end_idx}'.encode("utf-8")) # env.close() import zlib # Function to encode and compress an image # def encode_and_compress_image(image_path): # def encode_and_compress_image(image): # # Open and encode the image # # with open(image_path, 'rb') as f: # # image = Image.open(f) # encoded_data = image.tobytes() # # Compress the encoded data # # Compress the image data using bz2 # compressed_data = gzip.compress(encoded_data) # # compressed_data = bz2.compress(encoded_data) # # compressed_data = lzma.compress(encoded_data) # # compressed_data = zlib.compress(encoded_data) # return compressed_data # Function to compress an image using gzip # def compress_image_gzip(image_path): def encode_and_compress_image(inp_array, is_image=False, compress=True): # Read the image using imageio # image = imageio.v3.imread(image_path) # Convert the image to bytes # with io.BytesIO() as byte_buffer: # imageio.imsave(byte_buffer, image, format="png") # image_bytes = byte_buffer.getvalue() if is_image: inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png") else: inp_bytes = inp_array.tobytes() # Compress the image data using gzip if compress: compressed_data = gzip.compress(inp_bytes) return compressed_data else: return inp_bytes def convert_to_lmdb_compressed(dataset_loader, lmdb_path, dataset_size): """ Convert a PyTorch dataset to LMDB format. Parameters: - dataset: PyTorch dataset - lmdb_path: Path to store the LMDB database """ env = lmdb.open(lmdb_path, map_size=1024 ** 4, readahead=False) # Adjust map_size based on your dataset size # with env.begin(write=True) as txn: with env.begin(write=True) as txn: txn.put("length".encode("utf-8"), str(dataset_size).encode("utf-8")) for idx, sample in enumerate(tqdm(dataset_loader)): # remove the batch index of returned dict sample sample = { k:v.squeeze(0).cpu().numpy() if isinstance(v, th.Tensor) else v[0] for k, v in sample.items() } # sample = dataset_loader[idx] for k, v in sample.items(): # if idx == 0: # record data shape and type for decoding # txn.put(f"{k}.shape".encode("utf-8"), str(v.shape).encode("utf-8")) # txn.put(f"{k}.dtype".encode("utf-8"), str(v.dtype).encode("utf-8")) key = f'{idx}-{k}'.encode('utf-8') # value = pickle.dumps(sample) # if 'depth' in k or 'img' in k: if 'img' in k: # only bytes required? laod the 512 depth bytes only. v = encode_and_compress_image(v, is_image=True, compress=False) # elif 'depth' in k: else: # regular bytes encoding if type(v) != str: v = v.astype(np.float32) v = encode_and_compress_image(v, is_image=False, compress=False) else: v = v.encode("utf-8") # else: # regular bytes encoding # v = v.tobytes() txn.put(key, v) # txn.put("length".encode("utf-8"), f'{imgset_size}'.encode("utf-8")) # ! will incur bug in dataloading. # txn.put("start_idx".encode("utf-8"), f'{start_idx}'.encode("utf-8")) # txn.put("end_idx".encode("utf-8"), f'{end_idx}'.encode("utf-8")) # env.close() # convert_to_lmdb(data, os.path.join(logger.get_dir(), dataset_name)) convert_to_lmdb_compressed(data, os.path.join(logger.get_dir(), dataset_name)) convert_to_lmdb_compressed(data, os.path.join(logger.get_dir()), dataset_size) def create_argparser(**kwargs): # defaults.update(model_and_diffusion_defaults()) defaults = dict( seed=0, dataset_size=-1, trainer_name='input_rec', use_amp=False, overfitting=False, num_workers=4, image_size=128, image_size_encoder=224, iterations=150000, anneal_lr=False, lr=5e-5, weight_decay=0.0, lr_anneal_steps=0, batch_size=1, eval_batch_size=12, microbatch=-1, # -1 disables microbatches ema_rate="0.9999", # comma-separated list of EMA values log_interval=50, eval_interval=2500, save_interval=10000, resume_checkpoint="", use_fp16=False, fp16_scale_growth=1e-3, data_dir="", eval_data_dir="", # load_depth=False, # TODO logdir="/mnt/lustre/yslan/logs/nips23/", # test warm up pose sampling training objv_dataset=False, pose_warm_up_iter=-1, ) defaults.update(encoder_and_nsr_defaults()) # type: ignore defaults.update(loss_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": # os.environ[ # "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. # os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" # os.environ["NCCL_DEBUG"]="INFO" args = create_argparser().parse_args() args.local_rank = int(os.environ["LOCAL_RANK"]) args.gpus = th.cuda.device_count() opts = args args.rendering_kwargs = rendering_options_defaults(opts) # print(args) with open(os.path.join(args.logdir, 'args.json'), 'w') as f: json.dump(vars(args), f, indent=2) # Launch processes. print('Launching processes...') try: training_loop(args) # except KeyboardInterrupt as e: except Exception as e: # print(e) traceback.print_exc() dist_util.cleanup() # clean port and socket when ctrl+c