Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,752 Bytes
ef0eb1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import geffnet
INPUT_CHANNELS_DICT = {
0: [1280, 112, 40, 24, 16],
1: [1280, 112, 40, 24, 16],
2: [1408, 120, 48, 24, 16],
3: [1536, 136, 48, 32, 24],
4: [1792, 160, 56, 32, 24],
5: [2048, 176, 64, 40, 24],
6: [2304, 200, 72, 40, 32],
7: [2560, 224, 80, 48, 32],
}
class Encoder(nn.Module):
def __init__(self, B=5, pretrained=True):
"""e.g. B=5 will return EfficientNet-B5"""
super(Encoder, self).__init__()
basemodel_name = 'tf_efficientnet_b%s_ap' % B
basemodel = geffnet.create_model(basemodel_name, pretrained=pretrained)
# Remove last layer
basemodel.global_pool = nn.Identity()
basemodel.classifier = nn.Identity()
self.original_model = basemodel
def forward(self, x):
features = [x]
for k, v in self.original_model._modules.items():
if k == "blocks":
for ki, vi in v._modules.items():
features.append(vi(features[-1]))
else:
features.append(v(features[-1]))
return features
class ConvGRU(nn.Module):
def __init__(self, hidden_dim, input_dim, ks=3):
super(ConvGRU, self).__init__()
p = (ks - 1) // 2
self.convz = nn.Conv2d(hidden_dim + input_dim, hidden_dim, ks, padding=p)
self.convr = nn.Conv2d(hidden_dim + input_dim, hidden_dim, ks, padding=p)
self.convq = nn.Conv2d(hidden_dim + input_dim, hidden_dim, ks, padding=p)
def forward(self, h, x):
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz(hx))
r = torch.sigmoid(self.convr(hx))
q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1)))
h = (1 - z) * h + z * q
return h
class RayReLU(nn.Module):
def __init__(self, eps=1e-2):
super(RayReLU, self).__init__()
self.eps = eps
def forward(self, pred_norm, ray):
# angle between the predicted normal and ray direction
cos = torch.cosine_similarity(pred_norm, ray, dim=1).unsqueeze(
1
) # (B, 1, H, W)
# component of pred_norm along view
norm_along_view = ray * cos
# cos should be bigger than eps
norm_along_view_relu = ray * (torch.relu(cos - self.eps) + self.eps)
# difference
diff = norm_along_view_relu - norm_along_view
# updated pred_norm
new_pred_norm = pred_norm + diff
new_pred_norm = F.normalize(new_pred_norm, dim=1)
return new_pred_norm
class UpSampleBN(nn.Module):
def __init__(self, skip_input, output_features, align_corners=True):
super(UpSampleBN, self).__init__()
self._net = nn.Sequential(
nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(output_features),
nn.LeakyReLU(),
nn.Conv2d(
output_features, output_features, kernel_size=3, stride=1, padding=1
),
nn.BatchNorm2d(output_features),
nn.LeakyReLU(),
)
self.align_corners = align_corners
def forward(self, x, concat_with):
up_x = F.interpolate(
x,
size=[concat_with.size(2), concat_with.size(3)],
mode="bilinear",
align_corners=self.align_corners,
)
f = torch.cat([up_x, concat_with], dim=1)
return self._net(f)
class Conv2d_WS(nn.Conv2d):
"""weight standardization"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
):
super(Conv2d_WS, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
def forward(self, x):
weight = self.weight
weight_mean = (
weight.mean(dim=1, keepdim=True)
.mean(dim=2, keepdim=True)
.mean(dim=3, keepdim=True)
)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
weight = weight / std.expand_as(weight)
return F.conv2d(
x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
)
class UpSampleGN(nn.Module):
"""UpSample with GroupNorm"""
def __init__(self, skip_input, output_features, align_corners=True):
super(UpSampleGN, self).__init__()
self._net = nn.Sequential(
Conv2d_WS(skip_input, output_features, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, output_features),
nn.LeakyReLU(),
Conv2d_WS(
output_features, output_features, kernel_size=3, stride=1, padding=1
),
nn.GroupNorm(8, output_features),
nn.LeakyReLU(),
)
self.align_corners = align_corners
def forward(self, x, concat_with):
up_x = F.interpolate(
x,
size=[concat_with.size(2), concat_with.size(3)],
mode="bilinear",
align_corners=self.align_corners,
)
f = torch.cat([up_x, concat_with], dim=1)
return self._net(f)
def upsample_via_bilinear(out, up_mask, downsample_ratio):
"""bilinear upsampling (up_mask is a dummy variable)"""
return F.interpolate(
out, scale_factor=downsample_ratio, mode="bilinear", align_corners=True
)
def upsample_via_mask(out, up_mask, downsample_ratio):
"""convex upsampling"""
# out: low-resolution output (B, o_dim, H, W)
# up_mask: (B, 9*k*k, H, W)
k = downsample_ratio
N, o_dim, H, W = out.shape
up_mask = up_mask.view(N, 1, 9, k, k, H, W)
up_mask = torch.softmax(up_mask, dim=2) # (B, 1, 9, k, k, H, W)
up_out = F.unfold(out, [3, 3], padding=1) # (B, 2, H, W) -> (B, 2 X 3*3, H*W)
up_out = up_out.view(N, o_dim, 9, 1, 1, H, W) # (B, 2, 3*3, 1, 1, H, W)
up_out = torch.sum(up_mask * up_out, dim=2) # (B, 2, k, k, H, W)
up_out = up_out.permute(0, 1, 4, 2, 5, 3) # (B, 2, H, k, W, k)
return up_out.reshape(N, o_dim, k * H, k * W) # (B, 2, kH, kW)
def convex_upsampling(out, up_mask, k):
# out: low-resolution output (B, C, H, W)
# up_mask: (B, 9*k*k, H, W)
B, C, H, W = out.shape
up_mask = up_mask.view(B, 1, 9, k, k, H, W)
up_mask = torch.softmax(up_mask, dim=2) # (B, 1, 9, k, k, H, W)
out = F.pad(out, pad=(1, 1, 1, 1), mode="replicate")
up_out = F.unfold(out, [3, 3], padding=0) # (B, C, H, W) -> (B, C X 3*3, H*W)
up_out = up_out.view(B, C, 9, 1, 1, H, W) # (B, C, 9, 1, 1, H, W)
up_out = torch.sum(up_mask * up_out, dim=2) # (B, C, k, k, H, W)
up_out = up_out.permute(0, 1, 4, 2, 5, 3) # (B, C, H, k, W, k)
return up_out.reshape(B, C, k * H, k * W) # (B, C, kH, kW)
def get_unfold(pred_norm, ps, pad):
B, C, H, W = pred_norm.shape
pred_norm = F.pad(
pred_norm, pad=(pad, pad, pad, pad), mode="replicate"
) # (B, C, h, w)
pred_norm_unfold = F.unfold(pred_norm, [ps, ps], padding=0) # (B, C X ps*ps, h*w)
pred_norm_unfold = pred_norm_unfold.view(B, C, ps * ps, H, W) # (B, C, ps*ps, h, w)
return pred_norm_unfold
def get_prediction_head(input_dim, hidden_dim, output_dim):
return nn.Sequential(
nn.Conv2d(input_dim, hidden_dim, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, 1),
nn.ReLU(inplace=True),
nn.Conv2d(hidden_dim, output_dim, 1),
)
|