File size: 7,752 Bytes
ef0eb1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
import torch.nn as nn
import torch.nn.functional as F
import geffnet


INPUT_CHANNELS_DICT = {
    0: [1280, 112, 40, 24, 16],
    1: [1280, 112, 40, 24, 16],
    2: [1408, 120, 48, 24, 16],
    3: [1536, 136, 48, 32, 24],
    4: [1792, 160, 56, 32, 24],
    5: [2048, 176, 64, 40, 24],
    6: [2304, 200, 72, 40, 32],
    7: [2560, 224, 80, 48, 32],
}


class Encoder(nn.Module):
    def __init__(self, B=5, pretrained=True):
        """e.g. B=5 will return EfficientNet-B5"""
        super(Encoder, self).__init__()
        basemodel_name = 'tf_efficientnet_b%s_ap' % B
        basemodel = geffnet.create_model(basemodel_name, pretrained=pretrained)
        # Remove last layer
        basemodel.global_pool = nn.Identity()
        basemodel.classifier = nn.Identity()
        self.original_model = basemodel

    def forward(self, x):
        features = [x]
        for k, v in self.original_model._modules.items():
            if k == "blocks":
                for ki, vi in v._modules.items():
                    features.append(vi(features[-1]))
            else:
                features.append(v(features[-1]))
        return features


class ConvGRU(nn.Module):
    def __init__(self, hidden_dim, input_dim, ks=3):
        super(ConvGRU, self).__init__()
        p = (ks - 1) // 2
        self.convz = nn.Conv2d(hidden_dim + input_dim, hidden_dim, ks, padding=p)
        self.convr = nn.Conv2d(hidden_dim + input_dim, hidden_dim, ks, padding=p)
        self.convq = nn.Conv2d(hidden_dim + input_dim, hidden_dim, ks, padding=p)

    def forward(self, h, x):
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz(hx))
        r = torch.sigmoid(self.convr(hx))
        q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1)))
        h = (1 - z) * h + z * q
        return h


class RayReLU(nn.Module):
    def __init__(self, eps=1e-2):
        super(RayReLU, self).__init__()
        self.eps = eps

    def forward(self, pred_norm, ray):
        # angle between the predicted normal and ray direction
        cos = torch.cosine_similarity(pred_norm, ray, dim=1).unsqueeze(
            1
        )  # (B, 1, H, W)

        # component of pred_norm along view
        norm_along_view = ray * cos

        # cos should be bigger than eps
        norm_along_view_relu = ray * (torch.relu(cos - self.eps) + self.eps)

        # difference
        diff = norm_along_view_relu - norm_along_view

        # updated pred_norm
        new_pred_norm = pred_norm + diff
        new_pred_norm = F.normalize(new_pred_norm, dim=1)

        return new_pred_norm


class UpSampleBN(nn.Module):
    def __init__(self, skip_input, output_features, align_corners=True):
        super(UpSampleBN, self).__init__()
        self._net = nn.Sequential(
            nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(output_features),
            nn.LeakyReLU(),
            nn.Conv2d(
                output_features, output_features, kernel_size=3, stride=1, padding=1
            ),
            nn.BatchNorm2d(output_features),
            nn.LeakyReLU(),
        )
        self.align_corners = align_corners

    def forward(self, x, concat_with):
        up_x = F.interpolate(
            x,
            size=[concat_with.size(2), concat_with.size(3)],
            mode="bilinear",
            align_corners=self.align_corners,
        )
        f = torch.cat([up_x, concat_with], dim=1)
        return self._net(f)


class Conv2d_WS(nn.Conv2d):
    """weight standardization"""

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=True,
    ):
        super(Conv2d_WS, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            dilation,
            groups,
            bias,
        )

    def forward(self, x):
        weight = self.weight
        weight_mean = (
            weight.mean(dim=1, keepdim=True)
            .mean(dim=2, keepdim=True)
            .mean(dim=3, keepdim=True)
        )
        weight = weight - weight_mean
        std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
        weight = weight / std.expand_as(weight)
        return F.conv2d(
            x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
        )


class UpSampleGN(nn.Module):
    """UpSample with GroupNorm"""

    def __init__(self, skip_input, output_features, align_corners=True):
        super(UpSampleGN, self).__init__()
        self._net = nn.Sequential(
            Conv2d_WS(skip_input, output_features, kernel_size=3, stride=1, padding=1),
            nn.GroupNorm(8, output_features),
            nn.LeakyReLU(),
            Conv2d_WS(
                output_features, output_features, kernel_size=3, stride=1, padding=1
            ),
            nn.GroupNorm(8, output_features),
            nn.LeakyReLU(),
        )
        self.align_corners = align_corners

    def forward(self, x, concat_with):
        up_x = F.interpolate(
            x,
            size=[concat_with.size(2), concat_with.size(3)],
            mode="bilinear",
            align_corners=self.align_corners,
        )
        f = torch.cat([up_x, concat_with], dim=1)
        return self._net(f)


def upsample_via_bilinear(out, up_mask, downsample_ratio):
    """bilinear upsampling (up_mask is a dummy variable)"""
    return F.interpolate(
        out, scale_factor=downsample_ratio, mode="bilinear", align_corners=True
    )


def upsample_via_mask(out, up_mask, downsample_ratio):
    """convex upsampling"""
    # out: low-resolution output (B, o_dim, H, W)
    # up_mask: (B, 9*k*k, H, W)
    k = downsample_ratio

    N, o_dim, H, W = out.shape
    up_mask = up_mask.view(N, 1, 9, k, k, H, W)
    up_mask = torch.softmax(up_mask, dim=2)  # (B, 1, 9, k, k, H, W)

    up_out = F.unfold(out, [3, 3], padding=1)  # (B, 2, H, W) -> (B, 2 X 3*3, H*W)
    up_out = up_out.view(N, o_dim, 9, 1, 1, H, W)  # (B, 2, 3*3, 1, 1, H, W)
    up_out = torch.sum(up_mask * up_out, dim=2)  # (B, 2, k, k, H, W)

    up_out = up_out.permute(0, 1, 4, 2, 5, 3)  # (B, 2, H, k, W, k)
    return up_out.reshape(N, o_dim, k * H, k * W)  # (B, 2, kH, kW)


def convex_upsampling(out, up_mask, k):
    # out: low-resolution output    (B, C, H, W)
    # up_mask:                      (B, 9*k*k, H, W)
    B, C, H, W = out.shape
    up_mask = up_mask.view(B, 1, 9, k, k, H, W)
    up_mask = torch.softmax(up_mask, dim=2)  # (B, 1, 9, k, k, H, W)

    out = F.pad(out, pad=(1, 1, 1, 1), mode="replicate")
    up_out = F.unfold(out, [3, 3], padding=0)  # (B, C, H, W) -> (B, C X 3*3, H*W)
    up_out = up_out.view(B, C, 9, 1, 1, H, W)  # (B, C, 9, 1, 1, H, W)

    up_out = torch.sum(up_mask * up_out, dim=2)  # (B, C, k, k, H, W)
    up_out = up_out.permute(0, 1, 4, 2, 5, 3)  # (B, C, H, k, W, k)
    return up_out.reshape(B, C, k * H, k * W)  # (B, C, kH, kW)


def get_unfold(pred_norm, ps, pad):
    B, C, H, W = pred_norm.shape
    pred_norm = F.pad(
        pred_norm, pad=(pad, pad, pad, pad), mode="replicate"
    )  # (B, C, h, w)
    pred_norm_unfold = F.unfold(pred_norm, [ps, ps], padding=0)  # (B, C X ps*ps, h*w)
    pred_norm_unfold = pred_norm_unfold.view(B, C, ps * ps, H, W)  # (B, C, ps*ps, h, w)
    return pred_norm_unfold


def get_prediction_head(input_dim, hidden_dim, output_dim):
    return nn.Sequential(
        nn.Conv2d(input_dim, hidden_dim, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(hidden_dim, hidden_dim, 1),
        nn.ReLU(inplace=True),
        nn.Conv2d(hidden_dim, output_dim, 1),
    )