Spaces:
Runtime error
Runtime error
""" utils | |
""" | |
import os | |
import torch | |
import numpy as np | |
def load_checkpoint(fpath, model): | |
print("loading checkpoint... {}".format(fpath)) | |
ckpt = torch.load(fpath, map_location="cpu")["model"] | |
load_dict = {} | |
for k, v in ckpt.items(): | |
if k.startswith("module."): | |
k_ = k.replace("module.", "") | |
load_dict[k_] = v | |
else: | |
load_dict[k] = v | |
model.load_state_dict(load_dict) | |
print("loading checkpoint... / done") | |
return model | |
def compute_normal_error(pred_norm, gt_norm): | |
pred_error = torch.cosine_similarity(pred_norm, gt_norm, dim=1) | |
pred_error = torch.clamp(pred_error, min=-1.0, max=1.0) | |
pred_error = torch.acos(pred_error) * 180.0 / np.pi | |
pred_error = pred_error.unsqueeze(1) # (B, 1, H, W) | |
return pred_error | |
def compute_normal_metrics(total_normal_errors): | |
total_normal_errors = total_normal_errors.detach().cpu().numpy() | |
num_pixels = total_normal_errors.shape[0] | |
metrics = { | |
"mean": np.average(total_normal_errors), | |
"median": np.median(total_normal_errors), | |
"rmse": np.sqrt(np.sum(total_normal_errors * total_normal_errors) / num_pixels), | |
"a1": 100.0 * (np.sum(total_normal_errors < 5) / num_pixels), | |
"a2": 100.0 * (np.sum(total_normal_errors < 7.5) / num_pixels), | |
"a3": 100.0 * (np.sum(total_normal_errors < 11.25) / num_pixels), | |
"a4": 100.0 * (np.sum(total_normal_errors < 22.5) / num_pixels), | |
"a5": 100.0 * (np.sum(total_normal_errors < 30) / num_pixels), | |
} | |
return metrics | |
def pad_input(orig_H, orig_W): | |
if orig_W % 32 == 0: | |
l = 0 | |
r = 0 | |
else: | |
new_W = 32 * ((orig_W // 32) + 1) | |
l = (new_W - orig_W) // 2 | |
r = (new_W - orig_W) - l | |
if orig_H % 32 == 0: | |
t = 0 | |
b = 0 | |
else: | |
new_H = 32 * ((orig_H // 32) + 1) | |
t = (new_H - orig_H) // 2 | |
b = (new_H - orig_H) - t | |
return l, r, t, b | |
def get_intrins_from_fov(new_fov, H, W, device): | |
# NOTE: top-left pixel should be (0,0) | |
if W >= H: | |
new_fu = (W / 2.0) / np.tan(np.deg2rad(new_fov / 2.0)) | |
new_fv = (W / 2.0) / np.tan(np.deg2rad(new_fov / 2.0)) | |
else: | |
new_fu = (H / 2.0) / np.tan(np.deg2rad(new_fov / 2.0)) | |
new_fv = (H / 2.0) / np.tan(np.deg2rad(new_fov / 2.0)) | |
new_cu = (W / 2.0) - 0.5 | |
new_cv = (H / 2.0) - 0.5 | |
new_intrins = torch.tensor( | |
[[new_fu, 0, new_cu], [0, new_fv, new_cv], [0, 0, 1]], | |
dtype=torch.float32, | |
device=device, | |
) | |
return new_intrins | |
def get_intrins_from_txt(intrins_path, device): | |
# NOTE: top-left pixel should be (0,0) | |
with open(intrins_path, "r") as f: | |
intrins_ = f.readlines()[0].split()[0].split(",") | |
intrins_ = [float(i) for i in intrins_] | |
fx, fy, cx, cy = intrins_ | |
intrins = torch.tensor( | |
[[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=torch.float32, device=device | |
) | |
return intrins | |