File size: 6,340 Bytes
079a382
 
 
 
777ad8e
ce1bf6b
 
6c51e38
ce1bf6b
777ad8e
079a382
 
 
 
 
 
 
 
 
 
 
 
ce1bf6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
079a382
ce1bf6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
079a382
 
ce1bf6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
079a382
ce1bf6b
 
 
 
 
 
 
079a382
 
b7d4359
ce1bf6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
079a382
ce1bf6b
079a382
 
 
 
 
 
 
 
 
777ad8e
079a382
 
 
 
 
 
 
 
 
ce1bf6b
 
 
 
 
 
 
 
 
079a382
 
 
 
 
 
 
 
 
 
ce1bf6b
079a382
b7d4359
079a382
ce1bf6b
 
079a382
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import torch
import spaces
from diffusers import FluxInpaintPipeline
from PIL import Image #, ImageFile
import io
import numpy as np

# Enable loading of truncated images
# ImageFile.LOAD_TRUNCATED_IMAGES = True

# Initialize the pipeline
pipe = FluxInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.load_lora_weights(
    "ali-vilab/In-Context-LoRA", 
    weight_name="visual-identity-design.safetensors"
)

def safe_open_image(image):
    """Safely open and validate image"""
    try:
        if isinstance(image, np.ndarray):
            # Convert numpy array to PIL Image
            image = Image.fromarray(image)
        elif isinstance(image, bytes):
            # Handle bytes input
            image = Image.open(io.BytesIO(image))
        
        # Ensure the image is in RGB mode
        if image.mode != 'RGB':
            image = image.convert('RGB')
            
        return image
    except Exception as e:
        raise ValueError(f"Error processing input image: {str(e)}")

def square_center_crop(img, target_size=768):
    """Improved center crop with additional validation"""
    try:
        img = safe_open_image(img)
        
        # Ensure minimum size
        if img.size[0] < 64 or img.size[1] < 64:
            raise ValueError("Image is too small. Minimum size is 64x64 pixels.")
            
        width, height = img.size
        crop_size = min(width, height)
        
        # Calculate crop coordinates
        left = max(0, (width - crop_size) // 2)
        top = max(0, (height - crop_size) // 2)
        right = min(width, left + crop_size)
        bottom = min(height, top + crop_size)
        
        img_cropped = img.crop((left, top, right, bottom))
        
        # Use high-quality resizing
        return img_cropped.resize(
            (target_size, target_size),
            Image.Resampling.LANCZOS,
            reducing_gap=3.0
        )
    except Exception as e:
        raise ValueError(f"Error during image cropping: {str(e)}")

def duplicate_horizontally(img):
    """Improved horizontal duplication with validation"""
    try:
        width, height = img.size
        if width != height:
            raise ValueError(f"Input image must be square, got {width}x{height}")
        
        # Create new image with RGB mode explicitly
        new_image = Image.new('RGB', (width * 2, height))
        
        # Ensure the source image is in RGB mode
        if img.mode != 'RGB':
            img = img.convert('RGB')
            
        new_image.paste(img, (0, 0))
        new_image.paste(img, (width, 0))
        
        return new_image
    except Exception as e:
        raise ValueError(f"Error during image duplication: {str(e)}")

def safe_crop_output(img):
    """Safely crop the output image"""
    try:
        width, height = img.size
        half_width = width // 2
        return img.crop((half_width, 0, width, height))
    except Exception as e:
        raise ValueError(f"Error cropping output image: {str(e)}")

# Load the mask image with error handling
try:
    mask = Image.open("mask_square.png")
    if mask.mode != 'RGB':
        mask = mask.convert('RGB')
except Exception as e:
    raise RuntimeError(f"Error loading mask image: {str(e)}")

@spaces.GPU
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
    """Improved generation function with proper error handling"""
    try:
        if image is None:
            raise ValueError("No input image provided")
            
        if not prompt_user or prompt_user.strip() == "":
            raise ValueError("Please provide a prompt")
            
        prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
        prompt = prompt_structure + prompt_user
        
        # Process input image
        cropped_image = square_center_crop(image)
        logo_dupli = duplicate_horizontally(cropped_image)
        
        # Generate output
        out = pipe(
            prompt=prompt,
            image=logo_dupli,
            mask_image=mask,
            guidance_scale=6,
            height=768,
            width=1536,
            num_inference_steps=28,
            max_sequence_length=256,
            strength=1
        ).images[0]
        
        # First yield for progress
        yield None, out
        
        # Process and return final output
        image_2 = safe_crop_output(out)
        yield image_2, out
        
    except Exception as e:
        error_message = f"Error during generation: {str(e)}"
        print(error_message)  # For logging
        raise gr.Error(error_message)

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Logo in Context")
    gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Upload Logo Image",
                type="pil",
                height=384
            )
            prompt_input = gr.Textbox(
                label="Where should the logo be applied?",
                placeholder="e.g., a coffee cup on a wooden table",
                lines=2
            )
            generate_btn = gr.Button("Generate Application", variant="primary")
        
        with gr.Column():
            output_image = gr.Image(
                label="Generated Application",
                type="pil"
            )
            output_side = gr.Image(
                label="Side by side",
                type="pil"
            )
            
    with gr.Row():
        gr.Markdown("""
        ### Instructions:
        1. Upload a logo image (preferably square)
        2. Describe where you'd like to see the logo applied
        3. Click 'Generate Application' and wait for the result
        
        Note: The generation process might take a few moments.
        """)
    
    # Set up the click event with error handling
    generate_btn.click(
        fn=generate,
        inputs=[input_image, prompt_input],
        outputs=[output_image, output_side],
        api_name="generate"
    )

# Launch the interface
if __name__ == "__main__":
    demo.launch()