Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,340 Bytes
079a382 777ad8e ce1bf6b 6c51e38 ce1bf6b 777ad8e 079a382 ce1bf6b 079a382 ce1bf6b 079a382 ce1bf6b 079a382 ce1bf6b 079a382 b7d4359 ce1bf6b 079a382 ce1bf6b 079a382 777ad8e 079a382 ce1bf6b 079a382 ce1bf6b 079a382 b7d4359 079a382 ce1bf6b 079a382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import torch
import spaces
from diffusers import FluxInpaintPipeline
from PIL import Image #, ImageFile
import io
import numpy as np
# Enable loading of truncated images
# ImageFile.LOAD_TRUNCATED_IMAGES = True
# Initialize the pipeline
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.load_lora_weights(
"ali-vilab/In-Context-LoRA",
weight_name="visual-identity-design.safetensors"
)
def safe_open_image(image):
"""Safely open and validate image"""
try:
if isinstance(image, np.ndarray):
# Convert numpy array to PIL Image
image = Image.fromarray(image)
elif isinstance(image, bytes):
# Handle bytes input
image = Image.open(io.BytesIO(image))
# Ensure the image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
return image
except Exception as e:
raise ValueError(f"Error processing input image: {str(e)}")
def square_center_crop(img, target_size=768):
"""Improved center crop with additional validation"""
try:
img = safe_open_image(img)
# Ensure minimum size
if img.size[0] < 64 or img.size[1] < 64:
raise ValueError("Image is too small. Minimum size is 64x64 pixels.")
width, height = img.size
crop_size = min(width, height)
# Calculate crop coordinates
left = max(0, (width - crop_size) // 2)
top = max(0, (height - crop_size) // 2)
right = min(width, left + crop_size)
bottom = min(height, top + crop_size)
img_cropped = img.crop((left, top, right, bottom))
# Use high-quality resizing
return img_cropped.resize(
(target_size, target_size),
Image.Resampling.LANCZOS,
reducing_gap=3.0
)
except Exception as e:
raise ValueError(f"Error during image cropping: {str(e)}")
def duplicate_horizontally(img):
"""Improved horizontal duplication with validation"""
try:
width, height = img.size
if width != height:
raise ValueError(f"Input image must be square, got {width}x{height}")
# Create new image with RGB mode explicitly
new_image = Image.new('RGB', (width * 2, height))
# Ensure the source image is in RGB mode
if img.mode != 'RGB':
img = img.convert('RGB')
new_image.paste(img, (0, 0))
new_image.paste(img, (width, 0))
return new_image
except Exception as e:
raise ValueError(f"Error during image duplication: {str(e)}")
def safe_crop_output(img):
"""Safely crop the output image"""
try:
width, height = img.size
half_width = width // 2
return img.crop((half_width, 0, width, height))
except Exception as e:
raise ValueError(f"Error cropping output image: {str(e)}")
# Load the mask image with error handling
try:
mask = Image.open("mask_square.png")
if mask.mode != 'RGB':
mask = mask.convert('RGB')
except Exception as e:
raise RuntimeError(f"Error loading mask image: {str(e)}")
@spaces.GPU
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
"""Improved generation function with proper error handling"""
try:
if image is None:
raise ValueError("No input image provided")
if not prompt_user or prompt_user.strip() == "":
raise ValueError("Please provide a prompt")
prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
prompt = prompt_structure + prompt_user
# Process input image
cropped_image = square_center_crop(image)
logo_dupli = duplicate_horizontally(cropped_image)
# Generate output
out = pipe(
prompt=prompt,
image=logo_dupli,
mask_image=mask,
guidance_scale=6,
height=768,
width=1536,
num_inference_steps=28,
max_sequence_length=256,
strength=1
).images[0]
# First yield for progress
yield None, out
# Process and return final output
image_2 = safe_crop_output(out)
yield image_2, out
except Exception as e:
error_message = f"Error during generation: {str(e)}"
print(error_message) # For logging
raise gr.Error(error_message)
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Logo in Context")
gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Upload Logo Image",
type="pil",
height=384
)
prompt_input = gr.Textbox(
label="Where should the logo be applied?",
placeholder="e.g., a coffee cup on a wooden table",
lines=2
)
generate_btn = gr.Button("Generate Application", variant="primary")
with gr.Column():
output_image = gr.Image(
label="Generated Application",
type="pil"
)
output_side = gr.Image(
label="Side by side",
type="pil"
)
with gr.Row():
gr.Markdown("""
### Instructions:
1. Upload a logo image (preferably square)
2. Describe where you'd like to see the logo applied
3. Click 'Generate Application' and wait for the result
Note: The generation process might take a few moments.
""")
# Set up the click event with error handling
generate_btn.click(
fn=generate,
inputs=[input_image, prompt_input],
outputs=[output_image, output_side],
api_name="generate"
)
# Launch the interface
if __name__ == "__main__":
demo.launch() |