File size: 3,331 Bytes
079a382
 
 
 
b4f042d
6c51e38
53e6930
079a382
 
 
 
 
 
 
 
 
 
 
 
 
b4f042d
 
 
 
 
 
 
 
 
 
 
 
 
079a382
 
b4f042d
 
 
 
 
 
 
 
 
 
 
079a382
 
b7d4359
b4f042d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced387c
b4f042d
079a382
 
 
b4f042d
079a382
 
 
 
 
777ad8e
079a382
 
 
 
 
 
 
b4f042d
079a382
b4f042d
 
079a382
 
 
 
 
 
b4f042d
079a382
 
b4f042d
 
079a382
b7d4359
079a382
b4f042d
079a382
 
ced387c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import torch
import spaces
from diffusers import FluxInpaintPipeline
from PIL import Image, ImageFile

#ImageFile.LOAD_TRUNCATED_IMAGES = True

# Initialize the pipeline
pipe = FluxInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.load_lora_weights(
    "ali-vilab/In-Context-LoRA", 
    weight_name="visual-identity-design.safetensors"
)

def square_center_crop(img, target_size=768):
    if img.mode in ('RGBA', 'P'):
        img = img.convert('RGB')

    width, height = img.size
    crop_size = min(width, height)

    left = (width - crop_size) // 2
    top = (height - crop_size) // 2
    right = left + crop_size
    bottom = top + crop_size

    img_cropped = img.crop((left, top, right, bottom))
    return img_cropped.resize((target_size, target_size), Image.Resampling.LANCZOS)

def duplicate_horizontally(img):
    width, height = img.size
    if width != height:
        raise ValueError(f"Input image must be square, got {width}x{height}")

    new_image = Image.new('RGB', (width * 2, height))
    new_image.paste(img, (0, 0))
    new_image.paste(img, (width, 0))
    return new_image

# Load the mask image
mask = Image.open("mask_square.png")

@spaces.GPU
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
    prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
    prompt = prompt_structure + prompt_user

    cropped_image = square_center_crop(image)
    logo_dupli = duplicate_horizontally(cropped_image)

    out = pipe(
        prompt=prompt,
        image=logo_dupli,
        mask_image=mask,
        guidance_scale=6,
        height=768,
        width=1536,
        num_inference_steps=28,
        max_sequence_length=256,
        strength=1
    ).images[0]

    width, height = out.size
    half_width = width // 2
    image_2 = out.crop((half_width, 0, width, height))
    return image_2, out

with gr.Blocks() as demo:
    gr.Markdown("# Logo in Context")
    gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Upload Logo Image",
                type="pil",
                height=384
            )
            prompt_input = gr.Textbox(
                label="Where should the logo be applied?",
                placeholder="e.g., a coffee cup on a wooden table",
                lines=2
            )
            generate_btn = gr.Button("Generate Application", variant="primary")

        with gr.Column():
            output_image = gr.Image(label="Generated Application")
            output_side = gr.Image(label="Side by side")
    with gr.Row():
        gr.Markdown("""
        ### Instructions:
        1. Upload a logo image (preferably square)
        2. Describe where you'd like to see the logo applied
        3. Click 'Generate Application' and wait for the result

        Note: The generation process might take a few moments.
        """)

    # Set up the click event
    generate_btn.click(
        fn=generate,
        inputs=[input_image, prompt_input],
        outputs=[output_image, output_side]
    )

demo.launch()