Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
f27dee7
1
Parent(s):
85875c3
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import torch
|
|
3 |
import spaces
|
4 |
from diffusers import FluxInpaintPipeline
|
5 |
from PIL import Image, ImageFile
|
6 |
-
import numpy as np
|
7 |
|
8 |
#ImageFile.LOAD_TRUNCATED_IMAGES = True
|
9 |
|
@@ -18,57 +17,47 @@ pipe.load_lora_weights(
|
|
18 |
weight_name="visual-identity-design.safetensors"
|
19 |
)
|
20 |
|
21 |
-
def
|
22 |
if img.mode in ('RGBA', 'P'):
|
23 |
img = img.convert('RGB')
|
24 |
-
|
25 |
-
|
26 |
-
img_array = np.array(img)
|
27 |
-
|
28 |
-
# Get dimensions
|
29 |
-
height, width = img_array.shape[:2]
|
30 |
crop_size = min(width, height)
|
31 |
-
|
32 |
-
# Calculate crop coordinates
|
33 |
left = (width - crop_size) // 2
|
34 |
top = (height - crop_size) // 2
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
img_pil = Image.fromarray(img_cropped)
|
41 |
-
return img_pil.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
42 |
|
43 |
def duplicate_horizontally(img):
|
44 |
-
# Convert PIL Image to numpy array
|
45 |
width, height = img.size
|
46 |
if width != height:
|
47 |
raise ValueError(f"Input image must be square, got {width}x{height}")
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
52 |
|
53 |
# Load the mask image
|
54 |
mask = Image.open("mask_square.png")
|
55 |
|
56 |
-
def crop_input(image):
|
57 |
-
cropped_image = square_center_crop(image)
|
58 |
-
return cropped_image
|
59 |
-
|
60 |
@spaces.GPU
|
61 |
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
|
62 |
prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
|
63 |
prompt = prompt_structure + prompt_user
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
out = pipe(
|
68 |
prompt=prompt,
|
69 |
-
image=
|
70 |
mask_image=mask,
|
71 |
-
guidance_scale=
|
72 |
height=768,
|
73 |
width=1536,
|
74 |
num_inference_steps=28,
|
@@ -89,34 +78,19 @@ with gr.Blocks() as demo:
|
|
89 |
with gr.Column():
|
90 |
input_image = gr.Image(
|
91 |
label="Upload Logo Image",
|
92 |
-
type="pil"
|
93 |
-
|
94 |
-
cropped_image = gr.Image(
|
95 |
-
visible=False,
|
96 |
-
type="pil"
|
97 |
)
|
98 |
prompt_input = gr.Textbox(
|
99 |
label="Where should the logo be applied?",
|
100 |
-
placeholder="e.g., a coffee cup on a wooden table"
|
|
|
101 |
)
|
102 |
generate_btn = gr.Button("Generate Application", variant="primary")
|
103 |
|
104 |
with gr.Column():
|
105 |
output_image = gr.Image(label="Generated Application")
|
106 |
output_side = gr.Image(label="Side by side")
|
107 |
-
|
108 |
-
gr.Examples(
|
109 |
-
examples=[
|
110 |
-
["huggingface.png", "A hat"],
|
111 |
-
["awesome.png", "A tattoo on a leg"],
|
112 |
-
["dvd_logo.png", "a flower pot"]
|
113 |
-
],
|
114 |
-
inputs=[input_image, prompt_input],
|
115 |
-
outputs=[output_image, output_side],
|
116 |
-
fn=generate,
|
117 |
-
cache_examples="lazy"
|
118 |
-
)
|
119 |
-
|
120 |
with gr.Row():
|
121 |
gr.Markdown("""
|
122 |
### Instructions:
|
@@ -129,12 +103,8 @@ with gr.Blocks() as demo:
|
|
129 |
|
130 |
# Set up the click event
|
131 |
generate_btn.click(
|
132 |
-
fn=crop_input,
|
133 |
-
inputs=[input_image],
|
134 |
-
outputs=[cropped_image]
|
135 |
-
).then(
|
136 |
fn=generate,
|
137 |
-
inputs=[
|
138 |
outputs=[output_image, output_side]
|
139 |
)
|
140 |
|
|
|
3 |
import spaces
|
4 |
from diffusers import FluxInpaintPipeline
|
5 |
from PIL import Image, ImageFile
|
|
|
6 |
|
7 |
#ImageFile.LOAD_TRUNCATED_IMAGES = True
|
8 |
|
|
|
17 |
weight_name="visual-identity-design.safetensors"
|
18 |
)
|
19 |
|
20 |
+
def square_center_crop(img, target_size=768):
|
21 |
if img.mode in ('RGBA', 'P'):
|
22 |
img = img.convert('RGB')
|
23 |
+
|
24 |
+
width, height = img.size
|
|
|
|
|
|
|
|
|
25 |
crop_size = min(width, height)
|
26 |
+
|
|
|
27 |
left = (width - crop_size) // 2
|
28 |
top = (height - crop_size) // 2
|
29 |
+
right = left + crop_size
|
30 |
+
bottom = top + crop_size
|
31 |
+
|
32 |
+
img_cropped = img.crop((left, top, right, bottom))
|
33 |
+
return img_cropped.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
|
|
|
|
34 |
|
35 |
def duplicate_horizontally(img):
|
|
|
36 |
width, height = img.size
|
37 |
if width != height:
|
38 |
raise ValueError(f"Input image must be square, got {width}x{height}")
|
39 |
+
|
40 |
+
new_image = Image.new('RGB', (width * 2, height))
|
41 |
+
new_image.paste(img, (0, 0))
|
42 |
+
new_image.paste(img, (width, 0))
|
43 |
+
return new_image
|
44 |
|
45 |
# Load the mask image
|
46 |
mask = Image.open("mask_square.png")
|
47 |
|
|
|
|
|
|
|
|
|
48 |
@spaces.GPU
|
49 |
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
|
50 |
prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
|
51 |
prompt = prompt_structure + prompt_user
|
52 |
+
|
53 |
+
cropped_image = square_center_crop(image)
|
54 |
+
logo_dupli = duplicate_horizontally(cropped_image)
|
55 |
+
|
56 |
out = pipe(
|
57 |
prompt=prompt,
|
58 |
+
image=logo_dupli,
|
59 |
mask_image=mask,
|
60 |
+
guidance_scale=6,
|
61 |
height=768,
|
62 |
width=1536,
|
63 |
num_inference_steps=28,
|
|
|
78 |
with gr.Column():
|
79 |
input_image = gr.Image(
|
80 |
label="Upload Logo Image",
|
81 |
+
type="pil",
|
82 |
+
height=384
|
|
|
|
|
|
|
83 |
)
|
84 |
prompt_input = gr.Textbox(
|
85 |
label="Where should the logo be applied?",
|
86 |
+
placeholder="e.g., a coffee cup on a wooden table",
|
87 |
+
lines=2
|
88 |
)
|
89 |
generate_btn = gr.Button("Generate Application", variant="primary")
|
90 |
|
91 |
with gr.Column():
|
92 |
output_image = gr.Image(label="Generated Application")
|
93 |
output_side = gr.Image(label="Side by side")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
with gr.Row():
|
95 |
gr.Markdown("""
|
96 |
### Instructions:
|
|
|
103 |
|
104 |
# Set up the click event
|
105 |
generate_btn.click(
|
|
|
|
|
|
|
|
|
106 |
fn=generate,
|
107 |
+
inputs=[input_image, prompt_input],
|
108 |
outputs=[output_image, output_side]
|
109 |
)
|
110 |
|