import torch torch.jit.script = lambda f: f import spaces import gradio as gr from diffusers import FluxInpaintPipeline from PIL import Image, ImageFile # ImageFile.LOAD_TRUNCATED_IMAGES = True # Initialize the pipeline pipe = FluxInpaintPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 ) pipe.to("cuda") pipe.load_lora_weights( "ysmao/multiview-incontext", weight_name="twoview-incontext-b01.safetensors", ) def fractional_resize_image(img, target_size=864): if img.mode in ("RGBA", "P"): img = img.convert("RGB") width, height = img.size scale_factor = target_size / max(width, height) return img.resize( (int(width * scale_factor), int(height * scale_factor)), Image.Resampling.LANCZOS, ) def duplicate_horizontally(img): width, height = img.size new_image = Image.new("RGB", (width * 2, height)) new_image.paste(img, (0, 0)) new_image.paste(img, (width, 0)) mask_image = Image.new("RGB", (width * 2, height), (255, 255, 255)) left_mask = Image.new( "RGB", (width, height), (0, 0, 0), ) mask_image.paste(left_mask, (0, 0)) return new_image, mask_image @spaces.GPU(duration=120) def generate( image, prompt_description, prompt_user, progress=gr.Progress(track_tqdm=True) ): prompt_structure = ( "[TWO-VIEWS] This set of two images presents a scene from two different viewpoints. [IMAGE1] The first image shows " + prompt_description + " [IMAGE2] The second image shows the same room but in another viewpoint " ) prompt = prompt_structure + prompt_user + "." resized_image = fractional_resize_image(image) image_twoview, mask_image = duplicate_horizontally(resized_image) image_width, image_height = image_twoview.size out = pipe( prompt=prompt, image=image_twoview, mask_image=mask_image, guidance_scale=3.5, height=image_height, width=image_width, num_inference_steps=28, max_sequence_length=256, strength=1, ).images[0] width, height = out.size half_width = width // 2 image_2 = out.crop((half_width, 0, width, height)) return image_2, out with gr.Blocks() as demo: gr.Markdown("# MultiView in Context") gr.Markdown( "### [In-Context LoRA](https://huggingface.co/ali-vilab/In-Context-LoRA) + Image-to-Image + Inpainting. Diffusers implementation based on the [workflow by WizardWhitebeard/klinter](https://civitai.com/articles/8779)" ) gr.Markdown( "### Using [MultiView In-Context LoRA](https://huggingface.co/ysmao/multiview-incontext)" ) with gr.Tab("Demo"): with gr.Row(): with gr.Column(): input_image = gr.Image( label="Upload Source Image", type="pil", height=384 ) prompt_description = gr.Textbox( label="Describe the source image", placeholder="a living room with a sofa set with cushions, side tables with table lamps, a flat screen television on a table, houseplants, wall hangings, electric lights, and a carpet on the floor", ) prompt_input = gr.Textbox( label="Any additional description to the new viewpoint?", placeholder="", ) generate_btn = gr.Button("Generate Application", variant="primary") with gr.Column(): output_image = gr.Image(label="Generated Application") output_side = gr.Image(label="Side by side") gr.Examples( examples=[ [ "livingroom_fluxdev.jpg", "a living room with a sofa set with cushions, side tables with table lamps, a flat screen television on a table, houseplants, wall hangings, electric lights, and a carpet on the floor", "", ], [ "bedroom_fluxdev.jpg", "a bedroom with a bed, dresser, and window. The bed is covered with a blanket and pillows, and there is a carpet on the floor. The walls are adorned with photo frames, and the windows have curtains. Through the window, we can see trees outside.", "", ], ], inputs=[input_image, prompt_description, prompt_input], outputs=[output_image, output_side], fn=generate, cache_examples="lazy", ) with gr.Row(): gr.Markdown( """ ### Instructions: 1. Upload a source image 2. Describe the source image 3. Click 'Generate Application' and wait for the result Note: The generation process might take a few moments. """ ) # Set up the click event generate_btn.click( fn=generate, inputs=[input_image, prompt_description, prompt_input], outputs=[output_image, output_side], ) demo.launch()