Spaces:
Sleeping
Sleeping
app ready
Browse files- .gitignore +1 -0
- app.py +28 -0
- emoticlassifier-64acc-1_250loss.pth +3 -0
- model.py +72 -0
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from model import EmotiClassifier
|
4 |
+
|
5 |
+
predictor = EmotiClassifier()
|
6 |
+
|
7 |
+
labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
8 |
+
|
9 |
+
predictor.load_state_dict(torch.load('emoticlassifier-64acc-1_250loss.pth'))
|
10 |
+
|
11 |
+
def classify(image):
|
12 |
+
|
13 |
+
torch_image = torch.Tensor(image)
|
14 |
+
torch_image = torch_image.view(1, 1, torch_image.shape[0], torch_image.shape[1])
|
15 |
+
|
16 |
+
|
17 |
+
pred = predictor(torch_image)
|
18 |
+
|
19 |
+
label = torch.argmax(pred)
|
20 |
+
|
21 |
+
pred_class = label.item()
|
22 |
+
|
23 |
+
return labels[pred_class]
|
24 |
+
|
25 |
+
webcam = gr.Image(source='webcam', streaming=True, shape=(48, 48), image_mode='L')
|
26 |
+
|
27 |
+
interface = gr.Interface(fn=classify, inputs=webcam, outputs='text', live=True)
|
28 |
+
interface.launch();
|
emoticlassifier-64acc-1_250loss.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4074b9fff06fd41c2bfd66a7db94fd9e88238b4e1c8b26b92f56069b87f5fa1f
|
3 |
+
size 1743353
|
model.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class EmotiClassifier(nn.Module):
|
5 |
+
def __init__(self):
|
6 |
+
super().__init__()
|
7 |
+
|
8 |
+
|
9 |
+
self.l1 = nn.Sequential(
|
10 |
+
|
11 |
+
nn.Conv2d(1, 32, 3),
|
12 |
+
nn.ReLU(),
|
13 |
+
nn.BatchNorm2d(32),
|
14 |
+
nn.MaxPool2d(2),
|
15 |
+
nn.Dropout(0.2),
|
16 |
+
|
17 |
+
nn.Conv2d(32,64, 3),
|
18 |
+
nn.ReLU(),
|
19 |
+
nn.BatchNorm2d(64),
|
20 |
+
nn.MaxPool2d(2),
|
21 |
+
nn.Dropout(0.2),
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
nn.Conv2d(64,128, 3),
|
26 |
+
nn.ReLU(),
|
27 |
+
nn.BatchNorm2d(128),
|
28 |
+
nn.MaxPool2d(2),
|
29 |
+
nn.Dropout(0.2),
|
30 |
+
|
31 |
+
nn.Conv2d(128,256, 3),
|
32 |
+
nn.ReLU(),
|
33 |
+
nn.BatchNorm2d(256),
|
34 |
+
nn.MaxPool2d(2),
|
35 |
+
nn.Dropout(0.2),
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
self.fc = nn.Sequential(
|
40 |
+
nn.Linear(256, 128),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Linear(128, 64),
|
43 |
+
nn.ReLU(),
|
44 |
+
nn.Linear(64, 32),
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.Linear(32, 7),
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
self.loss = nn.CrossEntropyLoss();
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
out = self.l1(x);
|
56 |
+
out = out.view(-1, 256);
|
57 |
+
out = self.fc(out);
|
58 |
+
|
59 |
+
return out
|
60 |
+
|
61 |
+
def predict(self, x):
|
62 |
+
self.eval();
|
63 |
+
with torch.no_grad():
|
64 |
+
out = self.forward(x);
|
65 |
+
|
66 |
+
return out;
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
torch
|