import torch import torch.nn as nn class EmotiClassifier(nn.Module): def __init__(self): super().__init__() self.l1 = nn.Sequential( nn.Conv2d(1, 32, 3), nn.ReLU(), nn.BatchNorm2d(32), nn.MaxPool2d(2), nn.Dropout(0.2), nn.Conv2d(32,64, 3), nn.ReLU(), nn.BatchNorm2d(64), nn.MaxPool2d(2), nn.Dropout(0.2), nn.Conv2d(64,128, 3), nn.ReLU(), nn.BatchNorm2d(128), nn.MaxPool2d(2), nn.Dropout(0.2), nn.Conv2d(128,256, 3), nn.ReLU(), nn.BatchNorm2d(256), nn.MaxPool2d(2), nn.Dropout(0.2), ) self.fc = nn.Sequential( nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 7), ) self.loss = nn.CrossEntropyLoss(); def forward(self, x): out = self.l1(x); out = out.view(-1, 256); out = self.fc(out); return out def predict(self, x): self.eval(); with torch.no_grad(): out = self.forward(x); return out;