File size: 1,203 Bytes
ced99b8
 
 
 
aba4139
ced99b8
 
 
 
 
 
aba4139
df051f3
36908fb
df051f3
 
aba4139
 
 
 
 
 
 
 
 
 
ced99b8
 
 
 
 
aba4139
ced99b8
 
 
 
 
73ee0ef
ced99b8
 
 
 
5c41f30
ced99b8
 
 
5c41f30
 
ced99b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from ultralytics import YOLO
import gradio as gr
import cv2
import os
import random

model = YOLO('best.pt')


def show_preds_image(image_path):
    image = cv2.imread(image_path)
    outputs = model.predict(source=image_path, conf=0.45, save=True)
    print("output:", outputs)
    results = outputs[0]
    print("results:", results)

    # for i, det in enumerate(results.boxes.xyxy.cpu().numpy()):
    #     cv2.rectangle(
    #         image,
    #         (int(det[0]), int(det[1])),
    #         (int(det[2]), int(det[3])),
    #         color=(random.randint(0,255), random.randint(0,255), random.randint(0,255)),
    #         thickness=2,
    #         lineType=cv2.LINE_AA
    #     )
    return f"runs/detect/predict/{os.path.split(image_path)[-1]}"
 
inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="filepath", label="Output Image"),
]
interface_image = gr.Interface(
    fn=show_preds_image,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Cats and Dogs detector",
    cache_examples=False,
)





gr.TabbedInterface(
    [interface_image],
    tab_names=['Image inference']
).queue().launch()