Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from .sbert import vectorize as vec | |
class Block(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super().__init__() | |
self.model = nn.Sequential( | |
nn.Linear(input_dim, output_dim), | |
nn.Dropout(0.2), | |
) | |
def forward(self, x): | |
return self.model(x) | |
class Model(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.model = nn.Sequential( | |
Block(1024, 512), | |
nn.LeakyReLU(), | |
Block(512, 256), | |
nn.LeakyReLU(), | |
Block(256, 128), | |
nn.LeakyReLU(), | |
Block(128, 64), | |
nn.LeakyReLU(), | |
Block(64, 1), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
return self.model(x) | |
def predict(self, text): | |
return self(vec(text)) |