SFT training code
Browse files- sft_train.py +152 -0
sft_train.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
from datasets import Dataset, load_dataset
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
|
5 |
+
from peft import LoraConfig, TaskType, get_peft_model, AutoPeftModelForCausalLM
|
6 |
+
|
7 |
+
# %%
|
8 |
+
df = pd.read_csv('data/riddles_data.csv')
|
9 |
+
df =df.sample(frac = 1)
|
10 |
+
#df = df[:1000]
|
11 |
+
|
12 |
+
# %%
|
13 |
+
df.describe()
|
14 |
+
|
15 |
+
# %%
|
16 |
+
ds = Dataset.from_pandas(df)
|
17 |
+
|
18 |
+
# %%
|
19 |
+
ds[:3]
|
20 |
+
|
21 |
+
# %%
|
22 |
+
llm_model_name="Qwen/Qwen1.5-0.5B-Chat"
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(llm_model_name)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>')
|
25 |
+
|
26 |
+
tokenizer
|
27 |
+
|
28 |
+
|
29 |
+
# %%
|
30 |
+
def process_func(example):
|
31 |
+
MAX_LENGTH = 512
|
32 |
+
input_ids, attention_mask, labels = [], [], []
|
33 |
+
instruction = tokenizer(f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n猜谜语:\n谜面:{example['riddle']}\n\n谜底是什么?<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens
|
34 |
+
response = tokenizer(f"谜底是:{example['label']}", add_special_tokens=False)
|
35 |
+
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
|
36 |
+
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]
|
37 |
+
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
|
38 |
+
if len(input_ids) > MAX_LENGTH: # 做一个截断
|
39 |
+
input_ids = input_ids[:MAX_LENGTH]
|
40 |
+
attention_mask = attention_mask[:MAX_LENGTH]
|
41 |
+
labels = labels[:MAX_LENGTH]
|
42 |
+
print (f"{tokenizer.decode(input_ids)} Too Long")
|
43 |
+
return {
|
44 |
+
"input_ids": input_ids,
|
45 |
+
"attention_mask": attention_mask,
|
46 |
+
"labels": labels
|
47 |
+
}
|
48 |
+
|
49 |
+
# %%
|
50 |
+
tokenized_id = ds.map(process_func, remove_columns=ds.column_names)
|
51 |
+
tokenized_id
|
52 |
+
|
53 |
+
# %%
|
54 |
+
tokenizer.decode(tokenized_id[0]['input_ids'])
|
55 |
+
|
56 |
+
# %%
|
57 |
+
tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"])))
|
58 |
+
|
59 |
+
# %%
|
60 |
+
config = LoraConfig(
|
61 |
+
task_type=TaskType.CAUSAL_LM,
|
62 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
63 |
+
#target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
64 |
+
inference_mode=False,
|
65 |
+
r=32,
|
66 |
+
lora_alpha=32,
|
67 |
+
lora_dropout=0.05
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
# %%
|
72 |
+
model = get_peft_model(model, config)
|
73 |
+
config
|
74 |
+
|
75 |
+
# %%
|
76 |
+
model.print_trainable_parameters()
|
77 |
+
|
78 |
+
# %%
|
79 |
+
args = TrainingArguments(
|
80 |
+
output_dir="./Qwen1.5_0.5B_Chat_sft_full",
|
81 |
+
logging_steps=10,
|
82 |
+
num_train_epochs=2,
|
83 |
+
save_steps=10,
|
84 |
+
learning_rate=1e-4,
|
85 |
+
save_on_each_node=True,
|
86 |
+
fp16=False
|
87 |
+
)
|
88 |
+
|
89 |
+
# %%
|
90 |
+
trainer = Trainer(
|
91 |
+
model=model,
|
92 |
+
args=args,
|
93 |
+
train_dataset=tokenized_id,
|
94 |
+
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
|
95 |
+
)
|
96 |
+
|
97 |
+
trainer.train(resume_from_checkpoint=True)
|
98 |
+
|
99 |
+
# %%
|
100 |
+
trainer.save_model("./qwen_sft_full")
|
101 |
+
|
102 |
+
# %%
|
103 |
+
llm_model_name="Qwen/Qwen1.5-0.5B-Chat"
|
104 |
+
|
105 |
+
#model = AutoModelForCausalLM.from_pretrained(llm_model_name)
|
106 |
+
# # Load PEFT model on CPU
|
107 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
108 |
+
"Qwen1.5_0.5B_Chat_sft_full_ckpt_200_ok/checkpoint-210",
|
109 |
+
#low_cpu_mem_usage=True,
|
110 |
+
)
|
111 |
+
# # Merge LoRA and base model and save
|
112 |
+
#merged_model = model.merge_and_unload()
|
113 |
+
#merged_model.save_pretrained("./qwen_sft",safe_serialization=False, max_shard_size="2GB")
|
114 |
+
|
115 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>')
|
116 |
+
|
117 |
+
|
118 |
+
# %%
|
119 |
+
prompt = "谜面:一生受用(猜一字)\n谜底是什么?请解释。"
|
120 |
+
messages = [
|
121 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
122 |
+
{"role": "user", "content": prompt}
|
123 |
+
]
|
124 |
+
text = tokenizer.apply_chat_template(
|
125 |
+
messages,
|
126 |
+
tokenize=False,
|
127 |
+
add_generation_prompt=True
|
128 |
+
)
|
129 |
+
|
130 |
+
print(text)
|
131 |
+
model_inputs = tokenizer([text], return_tensors="pt").to("cpu")
|
132 |
+
|
133 |
+
generated_ids = model.generate(
|
134 |
+
model_inputs.input_ids,
|
135 |
+
max_new_tokens=128,
|
136 |
+
do_sample=False,
|
137 |
+
top_p=0.0
|
138 |
+
)
|
139 |
+
|
140 |
+
generated_ids = [
|
141 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
142 |
+
]
|
143 |
+
|
144 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
145 |
+
|
146 |
+
# %%
|
147 |
+
response
|
148 |
+
|
149 |
+
# %%
|
150 |
+
|
151 |
+
|
152 |
+
|