# %% from datasets import Dataset, load_dataset import pandas as pd from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer from peft import LoraConfig, TaskType, get_peft_model, AutoPeftModelForCausalLM # %% df = pd.read_csv('data/riddles_data.csv') df =df.sample(frac = 1) #df = df[:1000] # %% df.describe() # %% ds = Dataset.from_pandas(df) # %% ds[:3] # %% llm_model_name="Qwen/Qwen1.5-0.5B-Chat" model = AutoModelForCausalLM.from_pretrained(llm_model_name) tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>') tokenizer # %% def process_func(example): MAX_LENGTH = 512 input_ids, attention_mask, labels = [], [], [] instruction = tokenizer(f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n猜谜语:\n谜面:{example['riddle']}\n\n谜底是什么?<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens response = tokenizer(f"谜底是:{example['label']}", add_special_tokens=False) input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id] attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id] if len(input_ids) > MAX_LENGTH: # 做一个截断 input_ids = input_ids[:MAX_LENGTH] attention_mask = attention_mask[:MAX_LENGTH] labels = labels[:MAX_LENGTH] print (f"{tokenizer.decode(input_ids)} Too Long") return { "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels } # %% tokenized_id = ds.map(process_func, remove_columns=ds.column_names) tokenized_id # %% tokenizer.decode(tokenized_id[0]['input_ids']) # %% tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"]))) # %% config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], #target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], inference_mode=False, r=32, lora_alpha=32, lora_dropout=0.05 ) # %% model = get_peft_model(model, config) config # %% model.print_trainable_parameters() # %% args = TrainingArguments( output_dir="./Qwen1.5_0.5B_Chat_sft_full", logging_steps=10, num_train_epochs=2, save_steps=10, learning_rate=1e-4, save_on_each_node=True, fp16=False ) # %% trainer = Trainer( model=model, args=args, train_dataset=tokenized_id, data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True), ) trainer.train(resume_from_checkpoint=True) # %% trainer.save_model("./qwen_sft_full") # %% llm_model_name="Qwen/Qwen1.5-0.5B-Chat" #model = AutoModelForCausalLM.from_pretrained(llm_model_name) # # Load PEFT model on CPU model = AutoPeftModelForCausalLM.from_pretrained( "Qwen1.5_0.5B_Chat_sft_full_ckpt_200_ok/checkpoint-210", #low_cpu_mem_usage=True, ) # # Merge LoRA and base model and save #merged_model = model.merge_and_unload() #merged_model.save_pretrained("./qwen_sft",safe_serialization=False, max_shard_size="2GB") tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>') # %% prompt = "谜面:一生受用(猜一字)\n谜底是什么?请解释。" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) print(text) model_inputs = tokenizer([text], return_tensors="pt").to("cpu") generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=128, do_sample=False, top_p=0.0 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # %% response # %%