Spaces:
Sleeping
Sleeping
Commit
·
1f1da82
1
Parent(s):
f389cb9
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,18 @@
|
|
1 |
-
|
|
|
2 |
|
3 |
-
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.optim as optim
|
6 |
-
import torchvision
|
7 |
-
from torchvision import datasets, models, transforms
|
8 |
-
import os
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
-
import numpy as np
|
11 |
-
from tqdm import tqdm
|
12 |
-
from timeit import default_timer as timer
|
13 |
-
from datasets import load_dataset
|
14 |
-
from datasets import load_metric
|
15 |
-
import evaluate
|
16 |
-
from train import *
|
17 |
-
from transformers import AutoImageProcessor, MobileViTV2ForImageClassification, MobileViTV2Config
|
18 |
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
def compute_metrics(eval_pred):
|
27 |
-
metric = load_metric("accuracy")
|
28 |
-
predictions = np.argmax(eval_pred.predictions, axis=1)
|
29 |
-
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
if __name__ == '__main__':
|
35 |
-
# Define path
|
36 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
-
device = torch.device("cpu")
|
38 |
-
|
39 |
-
testdir = f"data/grocery_data_small/test"
|
40 |
-
# Change to fit hardware
|
41 |
-
num_workers = 0
|
42 |
-
batch_size = 8
|
43 |
-
num_epochs = 5
|
44 |
-
learning_rate = 0.001
|
45 |
-
max_epochs_stop = 3
|
46 |
-
print_every = 1
|
47 |
-
num_classes = 8
|
48 |
-
# define image transformations
|
49 |
-
# define transforms
|
50 |
-
|
51 |
-
# Datasets from folders
|
52 |
-
|
53 |
-
data = datasets.ImageFolder(root=testdir, transform=transforms.ToTensor())
|
54 |
-
|
55 |
-
|
56 |
-
# Dataloader iterators, make sure to shuffle
|
57 |
-
|
58 |
-
dataloader = DataLoader(data, batch_size=batch_size, shuffle=True,
|
59 |
-
num_workers=num_workers, collate_fn=collate_fn)
|
60 |
-
|
61 |
-
|
62 |
-
# Define the network with pretrained models
|
63 |
-
|
64 |
-
model_checkpoint = "apple/mobilevitv2-1.0-imagenet1k-256"
|
65 |
-
|
66 |
-
processor = AutoImageProcessor.from_pretrained(model_checkpoint)
|
67 |
-
model = MobileViTV2ForImageClassification.from_pretrained(model_checkpoint, num_labels=num_classes,
|
68 |
-
ignore_mismatched_sizes=True)
|
69 |
-
|
70 |
-
#model = MobileViTV2ForImageClassification(MobileViTV2Config())
|
71 |
-
#model.classifier = nn.Linear(model.classifier.in_features, num_classes)
|
72 |
-
print(model.classifier)
|
73 |
-
|
74 |
-
model.load_state_dict(torch.load('best_model_mb_ft.pth'))
|
75 |
-
model.eval()
|
76 |
-
correct = 0
|
77 |
-
total = 0
|
78 |
-
|
79 |
-
with torch.no_grad():
|
80 |
-
for inputs, labels in tqdm(dataloader, desc="predicting"):
|
81 |
-
inputs = processor(images=inputs, return_tensors="pt")
|
82 |
-
|
83 |
-
outputs = model(**inputs)
|
84 |
-
logits = outputs.logits
|
85 |
-
|
86 |
-
predicted = logits.argmax(-1)
|
87 |
-
|
88 |
-
total += labels.size(0)
|
89 |
-
correct += (predicted == labels).sum().item()
|
90 |
-
|
91 |
-
accuracy = correct / total * 100
|
92 |
-
|
93 |
-
print(f"Predict Accuracy: {accuracy:.2f}%")
|
94 |
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def predict(input_img):
|
7 |
+
predictions = pipeline(input_img)
|
8 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
9 |
|
10 |
+
gradio_app = gr.Interface(
|
11 |
+
predict,
|
12 |
+
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
13 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
14 |
+
title="Hot Dog? Or Not?",
|
15 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
if __name__ == "__main__":
|
18 |
+
gradio_app.launch()
|