Spaces:
Sleeping
Sleeping
Commit
·
b4750f5
1
Parent(s):
2c6b804
Upload 2 files
Browse files- best_model_mb_ft.pth +3 -0
- grocery_predict.py +94 -0
best_model_mb_ft.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4aee2952b1e7bda1673648f7917b0743230bd72a61e5ce747fb9c1c88f0300d
|
3 |
+
size 17752814
|
grocery_predict.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import print_function, division
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
import torchvision
|
7 |
+
from torchvision import datasets, models, transforms
|
8 |
+
import os
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
import numpy as np
|
11 |
+
from tqdm import tqdm
|
12 |
+
from timeit import default_timer as timer
|
13 |
+
from datasets import load_dataset
|
14 |
+
from datasets import load_metric
|
15 |
+
import evaluate
|
16 |
+
from train import *
|
17 |
+
from transformers import AutoImageProcessor, MobileViTV2ForImageClassification, MobileViTV2Config
|
18 |
+
|
19 |
+
|
20 |
+
def collate_fn(batch):
|
21 |
+
reviews, labels = zip(*batch)
|
22 |
+
labels = torch.Tensor(labels)
|
23 |
+
return reviews, labels
|
24 |
+
|
25 |
+
|
26 |
+
def compute_metrics(eval_pred):
|
27 |
+
metric = load_metric("accuracy")
|
28 |
+
predictions = np.argmax(eval_pred.predictions, axis=1)
|
29 |
+
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
# Define path
|
36 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
device = torch.device("cpu")
|
38 |
+
|
39 |
+
testdir = f"data/grocery_data_small/test"
|
40 |
+
# Change to fit hardware
|
41 |
+
num_workers = 0
|
42 |
+
batch_size = 8
|
43 |
+
num_epochs = 5
|
44 |
+
learning_rate = 0.001
|
45 |
+
max_epochs_stop = 3
|
46 |
+
print_every = 1
|
47 |
+
num_classes = 8
|
48 |
+
# define image transformations
|
49 |
+
# define transforms
|
50 |
+
|
51 |
+
# Datasets from folders
|
52 |
+
|
53 |
+
data = datasets.ImageFolder(root=testdir, transform=transforms.ToTensor())
|
54 |
+
|
55 |
+
|
56 |
+
# Dataloader iterators, make sure to shuffle
|
57 |
+
|
58 |
+
dataloader = DataLoader(data, batch_size=batch_size, shuffle=True,
|
59 |
+
num_workers=num_workers, collate_fn=collate_fn)
|
60 |
+
|
61 |
+
|
62 |
+
# Define the network with pretrained models
|
63 |
+
|
64 |
+
model_checkpoint = "apple/mobilevitv2-1.0-imagenet1k-256"
|
65 |
+
|
66 |
+
processor = AutoImageProcessor.from_pretrained(model_checkpoint)
|
67 |
+
model = MobileViTV2ForImageClassification.from_pretrained(model_checkpoint, num_labels=num_classes,
|
68 |
+
ignore_mismatched_sizes=True)
|
69 |
+
|
70 |
+
#model = MobileViTV2ForImageClassification(MobileViTV2Config())
|
71 |
+
#model.classifier = nn.Linear(model.classifier.in_features, num_classes)
|
72 |
+
print(model.classifier)
|
73 |
+
|
74 |
+
model.load_state_dict(torch.load('best_model_mb_ft.pth'))
|
75 |
+
model.eval()
|
76 |
+
correct = 0
|
77 |
+
total = 0
|
78 |
+
|
79 |
+
with torch.no_grad():
|
80 |
+
for inputs, labels in tqdm(dataloader, desc="predicting"):
|
81 |
+
inputs = processor(images=inputs, return_tensors="pt")
|
82 |
+
|
83 |
+
outputs = model(**inputs)
|
84 |
+
logits = outputs.logits
|
85 |
+
|
86 |
+
predicted = logits.argmax(-1)
|
87 |
+
|
88 |
+
total += labels.size(0)
|
89 |
+
correct += (predicted == labels).sum().item()
|
90 |
+
|
91 |
+
accuracy = correct / total * 100
|
92 |
+
|
93 |
+
print(f"Predict Accuracy: {accuracy:.2f}%")
|
94 |
+
|