import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import spaces from threading import Thread # Load model and tokenizer model_name = "Magpie-Align/MagpieLM-4B-Chat-v0.1" device = "cuda" # the device to load the model onto tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto" ) model.to(device) MAX_INPUT_TOKEN_LENGTH = 4096 # You may need to adjust this value @spaces.GPU(enable_queue=True) def respond( message, history: list[tuple[str, str]], system_message, max_tokens=2048, temperature=0.6, top_p=0.9, repetition_penalty=1.0, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, ) thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() def stream(): for text in streamer: yield text return stream() demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are Magpie, a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)", ), gr.Slider(minimum=0.5, maximum=1.5, value=1.0, step=0.1, label="Repetition Penalty"), ], ) if __name__ == "__main__": demo.launch(share=True)