Spaces:
Sleeping
Sleeping
File size: 5,498 Bytes
51ce47d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
"""Vector quantizer.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Reference:
https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vqvae/quantize.py
https://github.com/google-research/magvit/blob/main/videogvt/models/vqvae.py
https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/distributions/distributions.py
"""
from typing import Mapping, Text, Tuple
import torch
from einops import rearrange
from torch.cuda.amp import autocast
class VectorQuantizer(torch.nn.Module):
def __init__(self,
codebook_size: int = 1024,
token_size: int = 256,
commitment_cost: float = 0.25,
use_l2_norm: bool = False,
):
super().__init__()
self.commitment_cost = commitment_cost
self.embedding = torch.nn.Embedding(codebook_size, token_size)
self.embedding.weight.data.uniform_(-1.0 / codebook_size, 1.0 / codebook_size)
self.use_l2_norm = use_l2_norm
# Ensure quantization is performed using f32
@autocast(enabled=False)
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
z = z.float()
z = rearrange(z, 'b c h w -> b h w c').contiguous()
z_flattened = rearrange(z, 'b h w c -> (b h w) c')
if self.use_l2_norm:
z_flattened = torch.nn.functional.normalize(z_flattened, dim=-1)
embedding = torch.nn.functional.normalize(self.embedding.weight, dim=-1)
else:
embedding = self.embedding.weight
d = torch.sum(z_flattened**2, dim=1, keepdim=True) + \
torch.sum(embedding**2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, embedding.T)
min_encoding_indices = torch.argmin(d, dim=1) # num_ele
z_quantized = self.get_codebook_entry(min_encoding_indices).view(z.shape)
if self.use_l2_norm:
z = torch.nn.functional.normalize(z, dim=-1)
# compute loss for embedding
commitment_loss = self.commitment_cost * torch.mean((z_quantized.detach() - z) **2)
codebook_loss = torch.mean((z_quantized - z.detach()) **2)
loss = commitment_loss + codebook_loss
# preserve gradients
z_quantized = z + (z_quantized - z).detach()
# reshape back to match original input shape
z_quantized = rearrange(z_quantized, 'b h w c -> b c h w').contiguous()
result_dict = dict(
quantizer_loss=loss,
commitment_loss=commitment_loss,
codebook_loss=codebook_loss,
min_encoding_indices=min_encoding_indices.view(z_quantized.shape[0], z_quantized.shape[2], z_quantized.shape[3])
)
return z_quantized, result_dict
def get_codebook_entry(self, indices):
if len(indices.shape) == 1:
z_quantized = self.embedding(indices)
elif len(indices.shape) == 2:
z_quantized = torch.einsum('bd,dn->bn', indices, self.embedding.weight)
else:
raise NotImplementedError
if self.use_l2_norm:
z_quantized = torch.nn.functional.normalize(z_quantized, dim=-1)
return z_quantized
class DiagonalGaussianDistribution(object):
@autocast(enabled=False)
def __init__(self, parameters, deterministic=False):
"""Initializes a Gaussian distribution instance given the parameters.
Args:
parameters (torch.Tensor): The parameters for the Gaussian distribution. It is expected
to be in shape [B, 2 * C, *], where B is batch size, and C is the embedding dimension.
First C channels are used for mean and last C are used for logvar in the Gaussian distribution.
deterministic (bool): Whether to use deterministic sampling. When it is true, the sampling results
is purely based on mean (i.e., std = 0).
"""
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters.float(), 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
@autocast(enabled=False)
def sample(self):
x = self.mean.float() + self.std.float() * torch.randn(self.mean.shape).to(device=self.parameters.device)
return x
@autocast(enabled=False)
def mode(self):
return self.mean
@autocast(enabled=False)
def kl(self):
if self.deterministic:
return torch.Tensor([0.])
else:
return 0.5 * torch.sum(torch.pow(self.mean.float(), 2)
+ self.var.float() - 1.0 - self.logvar.float(),
dim=[1, 2])
|