File size: 9,398 Bytes
51ce47d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""This file contains the definition of data loader using webdataset.

This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. 

Reference:
    https://github.com/mlfoundations/open_clip/blob/main/src/training/data.py
    https://github.com/huggingface/open-muse/blob/main/training/data.py
"""

import math
from typing import List, Union, Text
import webdataset as wds
import torch
from torch.utils.data import default_collate
from torchvision import transforms
from torch.utils.data import Dataset
import linecache
import json


def filter_keys(key_set):
    def _f(dictionary):
        return {k: v for k, v in dictionary.items() if k in key_set}

    return _f


class ImageTransform:
    def __init__(self,
                 resize_shorter_edge: int = 256,
                 crop_size: int = 256,
                 random_crop: bool = True,
                 random_flip: bool = True,
                 normalize_mean: List[float] = [0., 0., 0.],
                 normalize_std: List[float] = [1., 1., 1.]):
        """Initializes the WebDatasetReader with specified augmentation parameters.

        Args:
            resize_shorter_edge: An integer, the shorter edge size to resize the input image to.
            crop_size: An integer, the size to crop the input image to.
            random_crop: A boolean, whether to use random crop augmentation during training.
            random_flip: A boolean, whether to use random flipping augmentation during training.
            normalize_mean: A list of float, the normalization mean used to normalize the image tensor.
            normalize_std: A list of float, the normalization std used to normalize the image tensor.
        
        Raises:
            NotImplementedError: If the interpolation mode is not one of ["bicubic", "bilinear"].
        """
        train_transform = []
        interpolation = transforms.InterpolationMode.BICUBIC

        train_transform.append(
            transforms.Resize(resize_shorter_edge, interpolation=interpolation, antialias=True))
        if random_crop:
            train_transform.append(transforms.RandomCrop(crop_size))
        else:
            train_transform.append(transforms.CenterCrop(crop_size))
        if random_flip:
            train_transform.append(transforms.RandomHorizontalFlip())
        train_transform.append(transforms.ToTensor())
        # normalize_mean = [0, 0, 0] and normalize_std = [1, 1, 1] will normalize images into [0, 1],
        # normalize_mean = [0.5, 0.5, 0.5] and normalize_std = [0.5, 0.5, 0.5] will normalize images into [-1, 1].
        train_transform.append(transforms.Normalize(normalize_mean, normalize_std))

        self.train_transform = transforms.Compose(train_transform)
        self.eval_transform = transforms.Compose(
            [
                # Note that we always resize to crop_size during eval to ensure the results
                # can be compared against reference numbers on ImageNet etc.
                transforms.Resize(crop_size, interpolation=interpolation, antialias=True),
                transforms.CenterCrop(crop_size),
                transforms.ToTensor(),
                transforms.Normalize(normalize_mean, normalize_std)
            ]
        )
        print(f"self.train_transform: {self.train_transform}")
        print(f"self.eval_transform: {self.eval_transform}")


class SimpleImageDataset:
    def __init__(
        self,
        train_shards_path: Union[Text, List[Text]],
        eval_shards_path: Union[Text, List[Text]],
        num_train_examples: int,
        per_gpu_batch_size: int,
        global_batch_size: int,
        num_workers_per_gpu: int = 12,
        resize_shorter_edge: int = 256,
        crop_size: int = 256,
        random_crop = True,
        random_flip = True,
        normalize_mean: List[float] = [0., 0., 0.],
        normalize_std: List[float] = [1., 1., 1.],
    ):
        """Initializes the WebDatasetReader class.

        Args:
            train_shards_path: A string or list of string, path to the training data shards in webdataset format.
            eval_shards_path: A string or list of string, path to the evaluation data shards in webdataset format.
            num_train_examples: An integer, total number of training examples.
            per_gpu_batch_size: An integer, number of examples per GPU batch.
            global_batch_size: An integer, total number of examples in a batch across all GPUs.
            num_workers_per_gpu: An integer, number of workers per GPU.
            resize_shorter_edge: An integer, the shorter edge size to resize the input image to.
            crop_size: An integer, the size to crop the input image to.
            random_crop: A boolean, whether to use random crop augmentation during training.
            random_flip: A boolean, whether to use random flipping augmentation during training.
            normalize_mean: A list of float, the normalization mean used to normalize the image tensor.
            normalize_std: A list of float, the normalization std used to normalize the image tensor.
        """
        transform = ImageTransform(
            resize_shorter_edge, crop_size, random_crop, random_flip,
            normalize_mean, normalize_std)

        train_processing_pipeline = [
            wds.decode(wds.autodecode.ImageHandler("pil", extensions=["webp", "png", "jpg", "jpeg"])),
            wds.rename(
                image="jpg;png;jpeg;webp",
                class_id="cls",
                handler=wds.warn_and_continue,
                ),
            wds.map(filter_keys(set(["image", "class_id", "filename"]))),
            wds.map_dict(
                image=transform.train_transform,
                class_id=lambda x: int(x),
                handler=wds.warn_and_continue,
            ),
        ]

        test_processing_pipeline = [
            wds.decode(wds.autodecode.ImageHandler("pil", extensions=["webp", "png", "jpg", "jpeg"])),
            wds.rename(
                image="jpg;png;jpeg;webp",
                class_id="cls",
                handler=wds.warn_and_continue,
                ),
            wds.map(filter_keys(set(["image", "class_id", "filename"]))),
            wds.map_dict(
                image=transform.eval_transform,
                class_id=lambda x: int(x),
                handler=wds.warn_and_continue,
            ),
        ]

        # Create train dataset and loader.
        pipeline = [
            wds.ResampledShards(train_shards_path),
            wds.tarfile_to_samples(handler=wds.warn_and_continue),
            wds.shuffle(bufsize=5000,
                        initial=1000),
            *train_processing_pipeline,
            wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate),
        ]

        num_batches = math.ceil(num_train_examples / global_batch_size)
        num_worker_batches = math.ceil(num_train_examples / 
            (global_batch_size * num_workers_per_gpu))
        num_batches = num_worker_batches * num_workers_per_gpu
        num_samples = num_batches * global_batch_size

        # Each worker is iterating over the complete dataset.
        self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches)
        self._train_dataloader = wds.WebLoader(
            self._train_dataset,
            batch_size=None,
            shuffle=False,
            num_workers=num_workers_per_gpu,
            pin_memory=True,
            persistent_workers=True,
        )
        # Add meta-data to dataloader instance for convenience.
        self._train_dataloader.num_batches = num_batches
        self._train_dataloader.num_samples = num_samples

        # Create eval dataset and loader.
        pipeline = [
            wds.SimpleShardList(eval_shards_path),
            wds.split_by_worker,
            wds.tarfile_to_samples(handler=wds.ignore_and_continue),
            *test_processing_pipeline,
            wds.batched(per_gpu_batch_size, partial=True, collation_fn=default_collate),
        ]
        self._eval_dataset = wds.DataPipeline(*pipeline)
        self._eval_dataloader = wds.WebLoader(
            self._eval_dataset,
            batch_size=None,
            shuffle=False,
            num_workers=num_workers_per_gpu,
            pin_memory=True,
            persistent_workers=True,
        )

    @property
    def train_dataset(self):
        return self._train_dataset

    @property
    def train_dataloader(self):
        return self._train_dataloader

    @property
    def eval_dataset(self):
        return self._eval_dataset

    @property
    def eval_dataloader(self):
        return self._eval_dataloader
    

class PretoeknizedDataSetJSONL(Dataset):
    def __init__(self, data_path):
        super().__init__()
        self.jsonl_file = data_path
        self.num_lines = sum(1 for _ in open(self.jsonl_file))
        # Ensure the file is cached
        linecache.checkcache(self.jsonl_file)
        print("Number of data:", self.num_lines)

    def __len__(self):
        return self.num_lines

    def __getitem__(self, idx):
        line = linecache.getline(self.jsonl_file, idx + 1).strip()
        data = json.loads(line)
        return torch.tensor(data["class_id"]), torch.tensor(data["tokens"])