Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, T5ForConditionalGeneration | |
tokenizer = AutoTokenizer.from_pretrained("yuewu/T5_title2abstract") | |
model = T5ForConditionalGeneration.from_pretrained("yuewu/T5_title2abstract") | |
def title2abstract(text): | |
input_ids = tokenizer( | |
text, | |
padding='max_length', | |
max_length=128, | |
return_tensors="pt").input_ids | |
generated_ids = model.generate( | |
input_ids, | |
max_length=512, | |
no_repeat_ngram_size=2, | |
early_stopping=True) | |
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
return generated_text[0] | |
demo = gr.Interface(fn=title2abstract, inputs="text", outputs="text", | |
title="Title to abstract generator", | |
description="Give a chemistry paper title and the model will write an abstract.") | |
demo.launch() |