File size: 7,568 Bytes
8b1029b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8785cf
8b1029b
 
 
d8785cf
8b1029b
 
 
 
 
 
 
c44b450
 
 
8b1029b
 
d8785cf
 
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
d8785cf
8b1029b
 
 
d8785cf
8b1029b
 
 
 
 
 
 
bf766c3
8b1029b
 
 
 
 
410ba09
 
 
 
c44b450
 
cfe183b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65967d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
import base64


def flip_text(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed):
    result = {"prompt": prompt, "negative_prompt": negative_prompt, "task": task, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "seed": seed}
    print(result)

    language = detect(prompt)

    if language == 'ru':
        prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
        print(prompt)

    cfg = int(cfg_scale)
    steps = int(steps)
    seed = int(seed)
    url_sd1 = "https://stable-diffusion-open.api.replicate.com/infer"
    url_sd2 = "https://api.replicate.com/predictions/10720/jobs/"
    url_sd3 = "https://stable-diffusion-open.api.replicate.com/predictions/10720/output/"

    if task == 'Realistic Vision 5.0':
        model = 'Realistic Vision V5.0.safetensors+%5B614d1063%5D'
    elif task == 'Dreamshaper 8':
        model = 'dreamshaper_8.safetensors+%5B9d40847d%5D'
    elif task == 'Deliberate 3':
        model = 'deliberate_v3.safetensors+%5Bafd9d2d4%5D'
    elif task == 'Analog Diffusion':
        model = 'analog-diffusion-1.0.ckpt+%5B9ca13f02%5D'
    elif task == 'Lyriel 1.6':
        model = 'lyriel_v16.safetensors+%5B68fceea2%5D'
    elif task == "Elldreth's Vivid Mix":
        model = 'elldreths-vivid-mix.safetensors+%5B342d9d26%5D'
    elif task == 'Anything V5':
        model = 'anything-v4.5-pruned.ckpt+%5B65745d25%5D'
    elif task == 'Openjourney V4':
        model = 'openjourney_V4.ckpt+%5Bca2f377f%5D'
    elif task == 'AbsoluteReality 1.8.1':
        model = 'absolutereality_v181.safetensors+%5B3d9d4d2b%5D'
    elif task == 'epiCRealism v5':
        model = 'epicrealism_naturalSinRC1VAE.safetensors+%5B90a4c676%5D'
    elif task == 'CyberRealistic 3.3':
        model = 'cyberrealistic_v33.safetensors+%5B82b0d085%5D'
    elif task == 'ToonYou 6':
        model = 'toonyou_beta6.safetensors+%5B980f6b15%5D'

    c = 0
    r = requests.get(f'{url_sd1}?prompt={prompt}&model={model}&negative_prompt={negative_prompt}&steps={steps}&cfg={cfg}&seed={seed}&sampler={sampler}&aspect_ratio=square', timeout=10)
    job = r.json()['job']
    while c < 10:
        c += 1
        time.sleep(2)
        r2 = requests.get(f'{url_sd2}{job}', timeout=10)
        status = r2.json()['status']
        if status == 'succeeded':
            photo = f'{url_sd3}{job}.png'
            return photo
        if status == "queued":
            continue
        if status == 'failed':
            return None


def mirror(image_output, scale_by, method, gfpgan, codeformer):

    url_up = "https://api.replicate.com/predictions/10721/infer"
    url_up_f = "https://api.replicate.com/output/10721/job/"

    scale_by = int(scale_by)
    gfpgan = int(gfpgan)
    codeformer = int(codeformer)

    with open(image_output, "rb") as image_file:
        encoded_string2 = base64.b64encode(image_file.read())
        encoded_string2 = str(encoded_string2).replace("b'", '')

    encoded_string2 = "data:image/png;base64," + encoded_string2
    data = {
        "fn_index": 81,
        "data": [0, 0, encoded_string2, None, "", "", True, gfpgan, codeformer, 0, scale_by, 512, 512, None, method, "None", 1, False, [], "", ""],
        "session_hash": ""
    }

    r = requests.post(f"{url_up}", json=data, timeout=100)
    print(r.text)
    ph = f"{url_up_f}" + str(r.json()['data'][0][0]['name'])
    return ph

css = """
#generate {
    width: 100%;
    background: #e253dd !important;
    border: none;
    border-radius: 50px;
    outline: none !important;
    color: white;
}
#generate:hover {
    background: #de6bda !important;
    outline: none !important;
    color: #fff;
    }
#image_output {
display: flex;
justify-content: center;
}
footer {visibility: hidden !important;}

#image_output {
height: 100% !important;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Tab("Базовые настройки"):
        with gr.Row():
            prompt = gr.Textbox(placeholder="Введите описание изображения...", show_label=True, label='Описание изображения:', lines=3)
        with gr.Row():
            task = gr.Radio(interactive=True, value="Deliberate 3", show_label=True, label="Модель нейросети:", 
                            choices=["AbsoluteReality 1.8.1", "Elldreth's Vivid Mix", "Anything V5", "Openjourney V4", "Analog Diffusion", 
                                     "Lyriel 1.6", "Realistic Vision 5.0", "Dreamshaper 8", "epiCRealism v5", 
                                     "CyberRealistic 3.3", "ToonYou 6", "Deliberate 3"])
    with gr.Tab("Расширенные настройки"):
        with gr.Row():
            negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
        with gr.Row():
            sampler = gr.Dropdown(value="DPM++ SDE Karras", show_label=True, label="Sampling Method:", choices=[
                "Euler", "Euler a", "Heun", "DPM++ 2M Karras", "DPM++ SDE Karras", "DDIM"])
        with gr.Row():
            steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=30, value=25, step=1)
        with gr.Row():
            cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
        with gr.Row():
            seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)

    with gr.Tab("Настройки апскейлинга"):
        with gr.Column():
            with gr.Row():
                scale_by = gr.Number(show_label=True, label="Во сколько раз увеличить:", minimum=1, maximum=4, value=2, step=1)
            with gr.Row():
                method = gr.Dropdown(show_label=True, value="ESRGAN_4x", label="Алгоритм увеличения", choices=["ScuNET GAN", "SwinIR 4x", "ESRGAN_4x", "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"])
        with gr.Column():
            with gr.Row():
                gfpgan = gr.Slider(show_label=True, label="Эффект GFPGAN (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)
            with gr.Row():
                codeformer = gr.Slider(show_label=True, label="Эффект CodeFormer (для улучшения лица)", minimum=0, maximum=1, value=0, step=0.1)

    
    with gr.Column():
        text_button = gr.Button("Сгенерировать изображение", variant='primary', elem_id="generate")
    with gr.Column():
        image_output = gr.Image(show_label=True, show_download_button=True, interactive=False, label='Результат:', elem_id='image_output', type='filepath')
        text_button.click(flip_text, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed], outputs=image_output)

        img2img_b = gr.Button("Увеличить изображение", variant='secondary')
        image_i2i = gr.Image(show_label=True, label='Увеличенное изображение:')
        img2img_b.click(mirror, inputs=[image_output, scale_by, method, gfpgan, codeformer], outputs=image_i2i)
        
        
demo.queue(concurrency_count=24)
demo.launch()