Spaces:
Runtime error
Runtime error
File size: 5,028 Bytes
56f79dc c416928 3c98be2 0afd6f0 b8975f7 0afd6f0 f5e7ff1 db6415d f5e7ff1 0afd6f0 b8975f7 3ce81f3 b8975f7 c996b7d 7492d5d c53d852 085c378 c53d852 3ce81f3 039e573 085c378 039e573 cb7c885 039e573 085c378 b8975f7 085c378 b8975f7 3ce81f3 0afd6f0 b8975f7 085c378 f5e7ff1 b8975f7 0afd6f0 b8975f7 7ab092f f5e7ff1 3cb91bd b8975f7 7ab092f f5e7ff1 3cb91bd 3ce81f3 b8975f7 f5e7ff1 b8975f7 f5e7ff1 3ce81f3 b8975f7 7f10b7b b8975f7 0afd6f0 db6415d bfa67c7 0afd6f0 b8975f7 f5e7ff1 b8975f7 085c378 b8975f7 f5e7ff1 3ce81f3 b8975f7 0afd6f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os
import gradio as gr
import numpy as np
from gradio_client import Client
MODEL_ID = os.getenv("MODEL_ID", "KingNish/SDXL-Flash")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
client = Client(MODEL_ID)
examples = [
"a cat eating a piece of cheese",
"a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
"Ironman VS Hulk, ultrarealistic",
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
"An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
"Kids going to school, Anime style"
]
css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("""# SDXL Flash""")
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Accordion("Advanced options", open=False):
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=4,
step=1,
value=1,
)
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=15,
step=1,
value=8,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
def generate(
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
):
results = []
for _ in range(num_images):
response = client.predict(
prompt=prompt,
negative_prompt=negative_prompt if use_negative_prompt else "",
use_negative_prompt=use_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
randomize_seed=randomize_seed,
use_resolution_binning=True,
api_name="/run"
)
if isinstance(response, list) and response[0].get("image"):
results.append(response[0]["image"])
else:
results.append("")
return results, seed
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|