File size: 5,028 Bytes
56f79dc
c416928
3c98be2
0afd6f0
b8975f7
0afd6f0
f5e7ff1
db6415d
f5e7ff1
0afd6f0
b8975f7
3ce81f3
b8975f7
c996b7d
7492d5d
c53d852
085c378
c53d852
3ce81f3
 
039e573
085c378
039e573
cb7c885
 
 
039e573
085c378
b8975f7
085c378
b8975f7
3ce81f3
 
 
 
 
 
 
 
 
0afd6f0
b8975f7
085c378
 
 
 
 
 
 
f5e7ff1
 
 
 
 
 
 
 
 
 
b8975f7
 
 
0afd6f0
b8975f7
 
 
 
 
 
 
7ab092f
f5e7ff1
 
3cb91bd
b8975f7
 
 
7ab092f
f5e7ff1
 
3cb91bd
3ce81f3
b8975f7
 
 
 
f5e7ff1
b8975f7
f5e7ff1
 
 
 
 
 
 
 
3ce81f3
 
b8975f7
 
 
7f10b7b
b8975f7
 
 
 
 
 
 
 
 
0afd6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6415d
bfa67c7
 
 
0afd6f0
 
b8975f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e7ff1
b8975f7
085c378
b8975f7
 
f5e7ff1
3ce81f3
 
b8975f7
0afd6f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import gradio as gr
import numpy as np
from gradio_client import Client

MODEL_ID = os.getenv("MODEL_ID", "KingNish/SDXL-Flash")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

client = Client(MODEL_ID)

examples = [
    "a cat eating a piece of cheese",
    "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
    "Ironman VS Hulk, ultrarealistic",
    "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
    "An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
    "Kids going to school, Anime style"
]

css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("""# SDXL Flash""")
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1, show_label=False)
    with gr.Accordion("Advanced options", open=False):
        num_images = gr.Slider(
            label="Number of Images",
            minimum=1,
            maximum=4,
            step=1,
            value=1,
        )
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=5,
                lines=4,
                placeholder="Enter a negative prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=np.iinfo(np.int32).max,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=15,
                step=1,
                value=8,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    def generate(
        prompt,
        negative_prompt,
        use_negative_prompt,
        seed,
        width,
        height,
        guidance_scale,
        num_inference_steps,
        randomize_seed,
        num_images,
    ):
        results = []
        for _ in range(num_images):
            response = client.predict(
                prompt=prompt,
                negative_prompt=negative_prompt if use_negative_prompt else "",
                use_negative_prompt=use_negative_prompt,
                seed=seed,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                randomize_seed=randomize_seed,
                use_resolution_binning=True,
                api_name="/run"
            )
            if isinstance(response, list) and response[0].get("image"):
                results.append(response[0]["image"])
            else:
                results.append("")
        return results, seed

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
            num_images
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()