File size: 7,221 Bytes
a059c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import contextlib
import logging
import torch
import torch.nn as nn
from lavis.common.registry import registry
from lavis.models import Blip2OPT, load_preprocess
from omegaconf import OmegaConf
@registry.register_model("blip2_opt_det")
class Blip2OPTDet(Blip2OPT):
def __init__(
self,
**kwargs
):
super().__init__(**kwargs)
self.opt_tokenizer.add_special_tokens({"mask_token": "<mask>"})
def maybe_autocast(self, dtype=torch.float16):
# if on cpu, don't use autocast
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
enable_autocast = self.device != torch.device("cpu")
if enable_autocast:
return torch.cuda.amp.autocast(dtype=dtype)
else:
return contextlib.nullcontext()
@torch.no_grad()
def forward(self, samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=30,
min_length=1,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=1.0,
num_captions=1,
temperature=1,
task_button=None):
image = samples["image"]
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_opt = self.opt_proj(query_output.last_hidden_state)
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(image.device)
self.opt_tokenizer.padding_side = "right"
if "text_input" in samples.keys():
# text = [t + "\n" for t in samples["text_input"]]
text = [t for t in samples["text_input"]]
opt_tokens = self.opt_tokenizer(
text,
return_tensors="pt",
padding="longest",
).to(image.device)
input_ids = opt_tokens.input_ids
attention_mask = opt_tokens.attention_mask
output_text = text
elif "input_ids" in samples.keys():
input_ids = samples["input_ids"]
attention_mask = samples["attention_mask"]
output_text = []
else:
assert "prompt" in samples.keys()
prompt = samples["prompt"]
assert len(prompt) == image.size(0)
opt_tokens = self.opt_tokenizer(prompt, return_tensors="pt", padding=True).to(
image.device
)
input_ids = opt_tokens.input_ids
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
if use_nucleus_sampling:
query_embeds = inputs_opt.repeat_interleave(num_captions, dim=0)
num_beams = 1
else:
query_embeds = inputs_opt.repeat_interleave(num_beams, dim=0)
with self.maybe_autocast():
outputs = self.opt_model.generate(
input_ids=input_ids,
query_embeds=query_embeds,
attention_mask=attention_mask,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_new_tokens=max_length,
min_length=min_length,
eos_token_id=self.eos_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
prompt_length = opt_tokens.input_ids.shape[1]
output_text = self.opt_tokenizer.batch_decode(
outputs[:, prompt_length:], skip_special_tokens=True
)
output_text = [text.strip() for text in output_text]
if task_button == 'Question Answering' or task_button == "Captioning":
output_text_input = [prompt[0] + ' ' + output_text[0]]
opt_tokens = self.opt_tokenizer(
output_text_input,
return_tensors="pt",
padding="longest",
).to(image.device)
input_ids = opt_tokens.input_ids
attention_mask = opt_tokens.attention_mask
inputs_embeds = self.opt_model.model.decoder.embed_tokens(input_ids)
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_opt, attention_mask], dim=1)
with self.maybe_autocast():
outputs = self.opt_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
output_hidden_states=True
)
n_queries = query_tokens.shape[1]
out_logits = outputs['logits'][:, n_queries:]
out_hidden = outputs['hidden_states'][-1][:, n_queries:]
return out_logits, out_hidden, input_ids, output_text
def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"):
model_cls = registry.get_model_class(name)
# load model
model = model_cls.from_pretrained(model_type=model_type)
if is_eval:
model.eval()
# load preprocess
cfg = OmegaConf.load(model_cls.default_config_path(model_type))
if cfg is not None:
preprocess_cfg = cfg.preprocess
vis_processors, txt_processors = load_preprocess(preprocess_cfg)
else:
vis_processors, txt_processors = None, None
logging.info(
f"""No default preprocess for model {name} ({model_type}).
This can happen if the model is not finetuned on downstream datasets,
or it is not intended for direct use without finetuning.
"""
)
if device == "cpu" or device == torch.device("cpu"):
model = model.float()
return model.to(device), vis_processors, txt_processors
class BLIP2Decoder(nn.Module):
def __init__(self, llm_name):
super(BLIP2Decoder, self).__init__()
self.device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
if llm_name not in ['pretrain_opt2.7b', 'caption_coco_opt2.7b',
'pretrain_opt6.7b', 'caption_coco_opt6.7b']:
raise ValueError(f"{llm_name} is not support yet")
model_type = llm_name
model, vis, _ = load_model_and_preprocess(name="blip2_opt_det",
model_type=model_type,
is_eval=True, device=self.device)
self.model = model
self.vis_processors = vis
self.freeze_layers()
def freeze_layers(self):
for p in self.model.parameters():
p.requires_grad = False
|