|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Deformable DETR model and criterion classes. |
|
""" |
|
import copy |
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torchvision.ops.boxes import batched_nms |
|
|
|
from util import box_ops |
|
from util.misc import (NestedTensor, accuracy, get_world_size, interpolate, |
|
inverse_sigmoid, is_dist_avail_and_initialized, |
|
nested_tensor_from_tensor_list) |
|
|
|
from .assigner import Stage1Assigner, Stage2Assigner |
|
from .backbone import build_backbone |
|
from .deformable_transformer import build_deforamble_transformer |
|
from .matcher import build_matcher |
|
from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm, |
|
dice_loss, sigmoid_focal_loss) |
|
|
|
|
|
def _get_clones(module, N): |
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) |
|
|
|
|
|
class DeformableDETR(nn.Module): |
|
""" This is the Deformable DETR module that performs object detection """ |
|
def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, |
|
aux_loss=True, with_box_refine=False, two_stage=False): |
|
""" Initializes the model. |
|
Parameters: |
|
backbone: torch module of the backbone to be used. See backbone.py |
|
transformer: torch module of the transformer architecture. See transformer.py |
|
num_classes: number of object classes |
|
num_queries: number of object queries, ie detection slot. This is the maximal number of objects |
|
DETR can detect in a single image. For COCO, we recommend 100 queries. |
|
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. |
|
with_box_refine: iterative bounding box refinement |
|
two_stage: two-stage Deformable DETR |
|
""" |
|
super().__init__() |
|
self.num_queries = num_queries |
|
self.transformer = transformer |
|
hidden_dim = transformer.d_model |
|
self.class_embed = nn.Linear(hidden_dim, num_classes) |
|
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) |
|
self.num_feature_levels = num_feature_levels |
|
if not two_stage: |
|
self.query_embed = nn.Embedding(num_queries, hidden_dim*2) |
|
if num_feature_levels > 1: |
|
num_backbone_outs = len(backbone.strides) |
|
input_proj_list = [] |
|
for _ in range(num_backbone_outs): |
|
in_channels = backbone.num_channels[_] |
|
input_proj_list.append(nn.Sequential( |
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=1), |
|
nn.GroupNorm(32, hidden_dim), |
|
)) |
|
for _ in range(num_feature_levels - num_backbone_outs): |
|
input_proj_list.append(nn.Sequential( |
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), |
|
nn.GroupNorm(32, hidden_dim), |
|
)) |
|
in_channels = hidden_dim |
|
self.input_proj = nn.ModuleList(input_proj_list) |
|
else: |
|
self.input_proj = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), |
|
nn.GroupNorm(32, hidden_dim), |
|
)]) |
|
self.backbone = backbone |
|
self.aux_loss = aux_loss |
|
self.with_box_refine = with_box_refine |
|
self.two_stage = two_stage |
|
|
|
prior_prob = 0.01 |
|
bias_value = -math.log((1 - prior_prob) / prior_prob) |
|
self.class_embed.bias.data = torch.ones(num_classes) * bias_value |
|
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) |
|
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) |
|
for proj in self.input_proj: |
|
nn.init.xavier_uniform_(proj[0].weight, gain=1) |
|
nn.init.constant_(proj[0].bias, 0) |
|
|
|
|
|
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers |
|
if with_box_refine: |
|
self.class_embed = _get_clones(self.class_embed, num_pred) |
|
self.bbox_embed = _get_clones(self.bbox_embed, num_pred) |
|
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) |
|
|
|
self.transformer.decoder.bbox_embed = self.bbox_embed |
|
else: |
|
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) |
|
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) |
|
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) |
|
self.transformer.decoder.bbox_embed = None |
|
if two_stage: |
|
|
|
self.transformer.decoder.class_embed = self.class_embed |
|
for box_embed in self.bbox_embed: |
|
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) |
|
|
|
def forward(self, samples: NestedTensor): |
|
""" The forward expects a NestedTensor, which consists of: |
|
- samples.tensor: batched images, of shape [batch_size x 3 x H x W] |
|
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels |
|
|
|
It returns a dict with the following elements: |
|
- "pred_logits": the classification logits (including no-object) for all queries. |
|
Shape= [batch_size x num_queries x (num_classes + 1)] |
|
- "pred_boxes": The normalized boxes coordinates for all queries, represented as |
|
(center_x, center_y, height, width). These values are normalized in [0, 1], |
|
relative to the size of each individual image (disregarding possible padding). |
|
See PostProcess for information on how to retrieve the unnormalized bounding box. |
|
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of |
|
dictionnaries containing the two above keys for each decoder layer. |
|
""" |
|
if not isinstance(samples, NestedTensor): |
|
samples = nested_tensor_from_tensor_list(samples) |
|
features, pos = self.backbone(samples) |
|
|
|
srcs = [] |
|
masks = [] |
|
for l, feat in enumerate(features): |
|
src, mask = feat.decompose() |
|
srcs.append(self.input_proj[l](src)) |
|
masks.append(mask) |
|
assert mask is not None |
|
if self.num_feature_levels > len(srcs): |
|
_len_srcs = len(srcs) |
|
for l in range(_len_srcs, self.num_feature_levels): |
|
if l == _len_srcs: |
|
src = self.input_proj[l](features[-1].tensors) |
|
else: |
|
src = self.input_proj[l](srcs[-1]) |
|
m = samples.mask |
|
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] |
|
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) |
|
srcs.append(src) |
|
masks.append(mask) |
|
pos.append(pos_l) |
|
|
|
query_embeds = None |
|
if not self.two_stage: |
|
query_embeds = self.query_embed.weight |
|
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, anchors = self.transformer(srcs, masks, pos, query_embeds) |
|
|
|
outputs_classes = [] |
|
outputs_coords = [] |
|
for lvl in range(hs.shape[0]): |
|
if lvl == 0: |
|
reference = init_reference |
|
else: |
|
reference = inter_references[lvl - 1] |
|
reference = inverse_sigmoid(reference) |
|
outputs_class = self.class_embed[lvl](hs[lvl]) |
|
tmp = self.bbox_embed[lvl](hs[lvl]) |
|
if reference.shape[-1] == 4: |
|
tmp += reference |
|
else: |
|
assert reference.shape[-1] == 2 |
|
tmp[..., :2] += reference |
|
outputs_coord = tmp.sigmoid() |
|
outputs_classes.append(outputs_class) |
|
outputs_coords.append(outputs_coord) |
|
outputs_class = torch.stack(outputs_classes) |
|
outputs_coord = torch.stack(outputs_coords) |
|
|
|
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1], |
|
'init_reference': init_reference} |
|
if self.aux_loss: |
|
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) |
|
|
|
if self.two_stage: |
|
enc_outputs_coord = enc_outputs_coord_unact.sigmoid() |
|
out['enc_outputs'] = { |
|
'pred_logits': enc_outputs_class, |
|
'pred_boxes': enc_outputs_coord, |
|
'anchors': anchors, |
|
} |
|
return out |
|
|
|
@torch.jit.unused |
|
def _set_aux_loss(self, outputs_class, outputs_coord): |
|
|
|
|
|
|
|
return [{'pred_logits': a, 'pred_boxes': b} |
|
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] |
|
|
|
|
|
class SetCriterion(nn.Module): |
|
""" This class computes the loss for DETR. |
|
The process happens in two steps: |
|
1) we compute hungarian assignment between ground truth boxes and the outputs of the model |
|
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) |
|
""" |
|
def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25, |
|
num_queries=300, assign_first_stage=False, assign_second_stage=False): |
|
""" Create the criterion. |
|
Parameters: |
|
num_classes: number of object categories, omitting the special no-object category |
|
matcher: module able to compute a matching between targets and proposals |
|
weight_dict: dict containing as key the names of the losses and as values their relative weight. |
|
losses: list of all the losses to be applied. See get_loss for list of available losses. |
|
focal_alpha: alpha in Focal Loss |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.matcher = matcher |
|
self.weight_dict = weight_dict |
|
self.losses = losses |
|
self.focal_alpha = focal_alpha |
|
self.assign_first_stage = assign_first_stage |
|
self.assign_second_stage = assign_second_stage |
|
|
|
if self.assign_first_stage: |
|
self.stg1_assigner = Stage1Assigner() |
|
if self.assign_second_stage: |
|
self.stg2_assigner = Stage2Assigner(num_queries) |
|
|
|
def loss_labels(self, outputs, targets, indices, num_boxes, log=True): |
|
"""Classification loss (NLL) |
|
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] |
|
""" |
|
assert 'pred_logits' in outputs |
|
src_logits = outputs['pred_logits'] |
|
|
|
idx = self._get_src_permutation_idx(indices) |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes, |
|
dtype=torch.int64, device=src_logits.device) |
|
target_classes[idx] = target_classes_o |
|
|
|
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], |
|
dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) |
|
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) |
|
|
|
target_classes_onehot = target_classes_onehot[:,:,:-1] |
|
loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] |
|
losses = {'loss_ce': loss_ce} |
|
|
|
if log: |
|
|
|
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] |
|
return losses |
|
|
|
@torch.no_grad() |
|
def loss_cardinality(self, outputs, targets, indices, num_boxes): |
|
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes |
|
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients |
|
""" |
|
pred_logits = outputs['pred_logits'] |
|
device = pred_logits.device |
|
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) |
|
|
|
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) |
|
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) |
|
losses = {'cardinality_error': card_err} |
|
return losses |
|
|
|
def loss_boxes(self, outputs, targets, indices, num_boxes): |
|
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss |
|
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] |
|
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. |
|
""" |
|
assert 'pred_boxes' in outputs |
|
idx = self._get_src_permutation_idx(indices) |
|
src_boxes = outputs['pred_boxes'][idx] |
|
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) |
|
|
|
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') |
|
|
|
losses = {} |
|
losses['loss_bbox'] = loss_bbox.sum() / num_boxes |
|
|
|
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( |
|
box_ops.box_cxcywh_to_xyxy(src_boxes), |
|
box_ops.box_cxcywh_to_xyxy(target_boxes))) |
|
losses['loss_giou'] = loss_giou.sum() / num_boxes |
|
return losses |
|
|
|
def loss_masks(self, outputs, targets, indices, num_boxes): |
|
"""Compute the losses related to the masks: the focal loss and the dice loss. |
|
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] |
|
""" |
|
assert "pred_masks" in outputs |
|
|
|
src_idx = self._get_src_permutation_idx(indices) |
|
tgt_idx = self._get_tgt_permutation_idx(indices) |
|
|
|
src_masks = outputs["pred_masks"] |
|
|
|
|
|
target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose() |
|
target_masks = target_masks.to(src_masks) |
|
|
|
src_masks = src_masks[src_idx] |
|
|
|
src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:], |
|
mode="bilinear", align_corners=False) |
|
src_masks = src_masks[:, 0].flatten(1) |
|
|
|
target_masks = target_masks[tgt_idx].flatten(1) |
|
|
|
losses = { |
|
"loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), |
|
"loss_dice": dice_loss(src_masks, target_masks, num_boxes), |
|
} |
|
return losses |
|
|
|
def _get_src_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) |
|
src_idx = torch.cat([src for (src, _) in indices]) |
|
return batch_idx, src_idx |
|
|
|
def _get_tgt_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) |
|
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) |
|
return batch_idx, tgt_idx |
|
|
|
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): |
|
loss_map = { |
|
'labels': self.loss_labels, |
|
'cardinality': self.loss_cardinality, |
|
'boxes': self.loss_boxes, |
|
'masks': self.loss_masks |
|
} |
|
assert loss in loss_map, f'do you really want to compute {loss} loss?' |
|
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) |
|
|
|
def forward(self, outputs, targets): |
|
""" This performs the loss computation. |
|
Parameters: |
|
outputs: dict of tensors, see the output specification of the model for the format |
|
targets: list of dicts, such that len(targets) == batch_size. |
|
The expected keys in each dict depends on the losses applied, see each loss' doc |
|
""" |
|
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs' and k != 'enc_outputs'} |
|
|
|
|
|
if self.assign_second_stage: |
|
indices = self.stg2_assigner(outputs_without_aux, targets) |
|
else: |
|
indices = self.matcher(outputs_without_aux, targets) |
|
|
|
|
|
num_boxes = sum(len(t["labels"]) for t in targets) |
|
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) |
|
if is_dist_avail_and_initialized(): |
|
torch.distributed.all_reduce(num_boxes) |
|
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() |
|
|
|
|
|
losses = {} |
|
for loss in self.losses: |
|
kwargs = {} |
|
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs)) |
|
|
|
|
|
if 'aux_outputs' in outputs: |
|
for i, aux_outputs in enumerate(outputs['aux_outputs']): |
|
if not self.assign_second_stage: |
|
indices = self.matcher(aux_outputs, targets) |
|
for loss in self.losses: |
|
if loss == 'masks': |
|
|
|
continue |
|
kwargs = {} |
|
if loss == 'labels': |
|
|
|
kwargs['log'] = False |
|
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) |
|
l_dict = {k + f'_{i}': v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
if 'enc_outputs' in outputs: |
|
enc_outputs = outputs['enc_outputs'] |
|
bin_targets = copy.deepcopy(targets) |
|
for bt in bin_targets: |
|
bt['labels'] = torch.zeros_like(bt['labels']) |
|
if self.assign_first_stage: |
|
indices = self.stg1_assigner(enc_outputs, bin_targets) |
|
else: |
|
indices = self.matcher(enc_outputs, bin_targets) |
|
for loss in self.losses: |
|
if loss == 'masks': |
|
|
|
continue |
|
kwargs = {} |
|
if loss == 'labels': |
|
|
|
kwargs['log'] = False |
|
l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs) |
|
l_dict = {k + f'_enc': v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
return losses |
|
|
|
|
|
class PostProcess(nn.Module): |
|
""" This module converts the model's output into the format expected by the coco api""" |
|
|
|
@torch.no_grad() |
|
def forward(self, outputs, target_sizes): |
|
""" Perform the computation |
|
Parameters: |
|
outputs: raw outputs of the model |
|
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch |
|
For evaluation, this must be the original image size (before any data augmentation) |
|
For visualization, this should be the image size after data augment, but before padding |
|
""" |
|
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] |
|
|
|
assert len(out_logits) == len(target_sizes) |
|
assert target_sizes.shape[1] == 2 |
|
|
|
prob = out_logits.sigmoid() |
|
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1) |
|
scores = topk_values |
|
|
|
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode='floor') |
|
labels = topk_indexes % out_logits.shape[2] |
|
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) |
|
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1,1,4)) |
|
|
|
|
|
img_h, img_w = target_sizes.unbind(1) |
|
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) |
|
boxes = boxes * scale_fct[:, None, :] |
|
|
|
results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] |
|
|
|
return results |
|
|
|
class NMSPostProcess(nn.Module): |
|
""" This module converts the model's output into the format expected by the coco api""" |
|
|
|
@torch.no_grad() |
|
def forward(self, outputs, target_sizes): |
|
""" Perform the computation |
|
Parameters: |
|
outputs: raw outputs of the model |
|
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch |
|
For evaluation, this must be the original image size (before any data augmentation) |
|
For visualization, this should be the image size after data augment, but before padding |
|
""" |
|
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] |
|
bs, n_queries, n_cls = out_logits.shape |
|
|
|
assert len(out_logits) == len(target_sizes) |
|
assert target_sizes.shape[1] == 2 |
|
|
|
prob = out_logits.sigmoid() |
|
|
|
all_scores = prob.view(bs, n_queries * n_cls).to(out_logits.device) |
|
all_indexes = torch.arange(n_queries * n_cls)[None].repeat(bs, 1).to(out_logits.device) |
|
all_boxes = all_indexes // out_logits.shape[2] |
|
all_labels = all_indexes % out_logits.shape[2] |
|
|
|
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) |
|
boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1,1,4)) |
|
|
|
|
|
img_h, img_w = target_sizes.unbind(1) |
|
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) |
|
boxes = boxes * scale_fct[:, None, :] |
|
|
|
results = [] |
|
for b in range(bs): |
|
box = boxes[b] |
|
score = all_scores[b] |
|
lbls = all_labels[b] |
|
|
|
topk = min(len(score), 10000) |
|
pre_topk = score.topk(topk).indices |
|
box = box[pre_topk] |
|
score = score[pre_topk] |
|
lbls = lbls[pre_topk] |
|
|
|
keep_inds = batched_nms(box, score, lbls, 0.7)[:100] |
|
results.append({ |
|
'scores': score[keep_inds], |
|
'labels': lbls[keep_inds], |
|
'boxes': box[keep_inds], |
|
}) |
|
|
|
return results |
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
""" Very simple multi-layer perceptron (also called FFN)""" |
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
return x |
|
|
|
|
|
def build(args): |
|
if args.dataset_file == 'coco': |
|
num_classes = 91 |
|
elif args.dataset_file in ['refcoco', 'refcoco+', 'refcocog']: |
|
num_classes = 91 |
|
elif args.dataset_file == "coco_panoptic": |
|
num_classes = 250 |
|
else: |
|
num_classes = 20 |
|
device = torch.device(args.device) |
|
|
|
backbone = build_backbone(args) |
|
|
|
transformer = build_deforamble_transformer(args) |
|
model = DeformableDETR( |
|
backbone, |
|
transformer, |
|
num_classes=num_classes, |
|
num_queries=args.num_queries, |
|
num_feature_levels=args.num_feature_levels, |
|
aux_loss=args.aux_loss, |
|
with_box_refine=args.with_box_refine, |
|
two_stage=args.two_stage, |
|
) |
|
if args.masks: |
|
model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) |
|
matcher = build_matcher(args) |
|
weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef} |
|
weight_dict['loss_giou'] = args.giou_loss_coef |
|
if args.masks: |
|
weight_dict["loss_mask"] = args.mask_loss_coef |
|
weight_dict["loss_dice"] = args.dice_loss_coef |
|
|
|
if args.aux_loss: |
|
aux_weight_dict = {} |
|
for i in range(args.dec_layers - 1): |
|
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) |
|
aux_weight_dict.update({k + f'_enc': v for k, v in weight_dict.items()}) |
|
weight_dict.update(aux_weight_dict) |
|
|
|
losses = ['labels', 'boxes', 'cardinality'] |
|
if args.masks: |
|
losses += ["masks"] |
|
|
|
criterion = SetCriterion(num_classes, matcher, weight_dict, losses, focal_alpha=args.focal_alpha, |
|
num_queries = args.num_queries, |
|
assign_first_stage=args.assign_first_stage, |
|
assign_second_stage=args.assign_second_stage) |
|
criterion.to(device) |
|
if args.assign_second_stage: |
|
postprocessors = {'bbox': NMSPostProcess()} |
|
else: |
|
postprocessors = {'bbox': PostProcess()} |
|
if args.masks: |
|
postprocessors['segm'] = PostProcessSegm() |
|
if args.dataset_file == "coco_panoptic": |
|
is_thing_map = {i: i <= 90 for i in range(201)} |
|
postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85) |
|
|
|
return model, criterion, postprocessors |
|
|