Spaces:
Runtime error
Runtime error
File size: 3,987 Bytes
32a0c88 af091f0 666b18f 32a0c88 0a84bc5 308bbdb 3692424 dd6acae 308bbdb 8788308 308bbdb fa449b5 0a84bc5 fa449b5 32a0c88 250da89 8788308 023be41 d7dcddc 3692424 32a0c88 3692424 c7e3a64 32a0c88 c7e3a64 32a0c88 3692424 32a0c88 eb3778e 32a0c88 eb3778e 32a0c88 3692424 32a0c88 f626afb 32a0c88 8788308 50bf796 68fdef8 3692424 68fdef8 32a0c88 8788308 32a0c88 165b6ba 8788308 32a0c88 8788308 3692424 8bf463f 0e9a343 8bf463f 32a0c88 8788308 32a0c88 3692424 8788308 421c741 3692424 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import os
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
#https://huggingface.co/spaces/yuhe6/final_project/blob/main/Net_Rotate9.pth
#os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
#model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True)
#model = torch.jit.load('https://huggingface.co/spaces/yuhe6/final_project/blob/main/Net_Rotate9.pth').eval().to(device)
model = torch.jit.load('Net2_Flip_jit.pt', map_location = torch.device('cpu'))
model.eval()
model_categories = ["cat","dog"] # verify order
n_categories = len(model_categories)
#torch.hub.download_url_to_file('https://huggingface.co/spaces/yuhe6/final_project/blob/main/Net_Rotate9.pth', '/tmp/temporary_file')
#model = torch.hub.load('/tmp', 'temporary_file', pretrained=True)
#model.eval()
# Download an example image from the pytorch website
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/5/5b/Dog_%28Canis_lupus_familiaris%29_%281%29.jpg", "dog1.jpg")
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Golde33443.jpg/640px-Golde33443.jpg", "dog2.jpg")
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/c/c7/Tabby_cat_with_blue_eyes-3336579.jpg", "cat1.jpg")
torch.hub.download_url_to_file("https://upload.wikimedia.org/wikipedia/commons/9/9e/Domestic_cat.jpg", "cat2.jpg")
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(size = (256, 256)), # Fixed resize from transforms.Resize(256)
#transforms.CenterCrop(224),
transforms.ToTensor(),
#transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Used print statements to detect shapes between input tensor & batch
# e.g. input_tensor.shape
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch) # model(input_tensor) # needed to have batch dimension
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0])
# Read the categories
#with open("dog_cat.txt", "r") as f:
#categories = [s.strip() for s in f.readlines()]
#with open("dog_cat.txt", "r") as f:
#categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top1_prob, top1_catid = torch.topk(probabilities, n_categories)
result = {}
for i in range(top1_prob.size(0)):
result[model_categories[top1_catid[i]]] = top1_prob[i].item()
return result
inputs = gr.inputs.Image(type='pil')
outputs = gr.outputs.Label(type="confidences", num_top_classes = n_categories)
title = "STAT 430 Final Project App -- Made by Group DHZ"
description = "This is our Cat & Dog Classifier for the final project, and the model we use is generated by our second neural network augmented by the flipping technique, which is would give the best accuracy. To use it, simply upload your image, or click one of the examples to load them. The authors are Xiongjie Dai (xdai12), Yu He (yuhe6), Mengjia Zeng (mengjia6)."
#article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1911.11907'>GhostNet: More Features from Cheap Operations</a> | <a href='https://github.com/huawei-noah/CV-Backbones'>Github Repo</a></p>"
examples = [
['dog1.jpg'],
['cat1.jpg'],
['dog2.jpg'],
['cat2.jpg']
]
gr.Interface(
inference, inputs, outputs,
title = title, description = description,
examples = examples,
analytics_enabled = False).launch(
#debug = True # Enabled debug mode to see the stacktrace on Google Colab.
) |